首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of Artemisia arbuscula ssp. arbuscula, A. tridentata ssp. tridentata, ssp. wyomingensis, ssp. vaseyana and ssp. vaseyana f. spiciformis were collected from various locations in Montana and analyzed by TLC for their sesquiterpene lactone content. Artemisia tridentata ssp. tridentata and ssp. wyomingensis are distinct morphologically and chemically, whereas ssp. vaseyana has three distinct chemical groups not yet separated morphologically. Artemisia arbuscula ssp. arbuscula and A. tridentata ssp. vaseyana f. spiciformis are easily separated by morphology but have identical TLC patterns. It has been further shown that the sesquiterpene lactones produced for a particular species or subspecies are the same regardless of the time of the year collected, although the quantity varies from winter to summer.  相似文献   

2.
Application of a mycorrhizal inoculum could be one way to increase the yield of rice plants and reduce the application of fertilizer. We therefore studied arbuscular mycorrhizal fungi (AMF) in the roots of wetland rice (Oryza sativa L.) collected at the seedling, tillering, heading, and ripening stages in four paddy wetlands that had been under a high-input and intensively irrigated rice cultivation system for more than 20 years. It was found that AMF colonization was mainly established in the heading and ripening stages. The AMF community structure was characterized in rhizosphere soils and roots from two of the studied paddy wetlands. A fragment covering the partial small subunit (SSU), the whole internal transcribed spacer (ITS), and the partial large subunit (LSU) rRNA operon regions of AMF was amplified, cloned, and sequenced from roots and soils. A total of 639 AMF sequences were obtained, and these were finally assigned to 16 phylotypes based on a phylogenetic analysis, including 12 phylotypes from Glomeraceae, one phylotype from Claroideoglomeraceae, two phylotypes from Paraglomeraceae, and one unidentified phylotype. The AMF phylotype compositions in the soils were similar between the two surveyed sites, but there was a clear discrepancy between the communities obtained from root and soil. The relatively high number of AMF phylotypes at the surveyed sites suggests that the conditions are suitable for some species of AMF and that they may have an important function in conventional rice cultivation systems. The species richness of root-colonizing AMF increased with the growth of rice, and future studies should consider the developmental stages of this crop in the exploration of AMF function in paddy wetlands.  相似文献   

3.
Extraradical hyphae (ERH) of arbuscular mycorrhizal fungi (AMF) extend from plant roots into the soil environment and interact with soil microbial communities. Evidence of positive and negative interactions between AMF and soil bacteria point to functionally important ERH-associated communities. To characterize communities associated with ERH and test controls on their establishment and composition, we utilized an in-growth core system containing a live soil–sand mixture that allowed manual extraction of ERH for 16S rRNA gene amplicon profiling. Across experiments and soils, consistent enrichment of members of the Betaproteobacteriales, Myxococcales, Fibrobacterales, Cytophagales, Chloroflexales, and Cellvibrionales was observed on ERH samples, while variation among samples from different soils was observed primarily at lower taxonomic ranks. The ERH-associated community was conserved between two fungal species assayed, Glomus versiforme and Rhizophagus irregularis, though R. irregularis exerted a stronger selection and showed greater enrichment for taxa in the Alphaproteobacteria and Gammaproteobacteria. A distinct community established within 14 days of hyphal access to the soil, while temporal patterns of establishment and turnover varied between taxonomic groups. Identification of a conserved ERH-associated community is consistent with the concept of an AMF microbiome and can aid the characterization of facilitative and antagonistic interactions influencing the plant-fungal symbiosis.Subject terms: Symbiosis, Microbiome  相似文献   

4.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gentiana verna, Gentiana acaulis, and accompanying plant species from two species-rich Swiss alpine meadows located in the same area. The aim of the study was to elucidate the impact of host preference or host specificity on the AMF community in the roots. The roots were analyzed by nested PCR, restriction fragment length polymorphism screening, and sequencing of ribosomal DNA small-subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic sequence types. The AMF community composition was strongly influenced by the host plant species, but compositions did not significantly differ between the two sites. Detailed analyses of the two cooccurring gentian species G. verna and G. acaulis, as well as of neighboring Trifolium spp., revealed that their AMF communities differed significantly. All three host plant taxa harbored AMF communities comprising multiple phylotypes from different fungal lineages. A frequent fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., suggesting some degree of host preference for this fungus in this habitat. In conclusion, the results indicate that within a relatively small area with similar soil and climatic conditions, the host plant species can have a major influence on the AMF communities within the roots. No evidence was found for a narrowing of the mycosymbiont spectrum in the two green gentians, in contrast to previous findings with their achlorophyllous relatives.  相似文献   

5.
Topographic control of vegetation in a mountain big sagebrush steppe   总被引:2,自引:0,他引:2  
Mountain big sagebrush steppes in Wyoming have strong spatial patterning associated with topography. We describe the spatial variability of vegetation in a sagebrush steppe, and test the relationship between topography and vegetation using canonical correlation. Results of the analysis suggest that the main control over vegetation distribution in this system is wind exposure. Exposed sites are characterized by cushion plant communities and Artemisia nova, and less exposed sites by the taller sagebrush species Artemisia tridentata ssp. vaseyana. Topographic depressions and leeward slopes are characterized by aspen stands and nivation hollows. Measurements of soil microclimate suggest that a major influence of topographic position on vegetation is snow redistribution and its effect on soil moisture and temperature.Abbreviations ARNO Artemisia nova - ARTRW Artemisia tridentata ssp. wyomingensis - ARTRV Artemisia tridentata ssp. vaseyana - PUTR Purshia tridentata - RIP riparian community - POTR Populus tremuloides - NIV nivation hollow community  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) have been implicated in non-native plant invasion success and persistence. However, few studies have identified the AMF species associating directly with plant invaders, or how these associations differ from those of native plant species. Identifying changes to the AMF community due to plant invasion could yield key plant–AMF interactions necessary for the restoration of native plant communities. This research compared AMF associating with coexisting Bromus tectorum, an invasive annual grass, and Artemisia tridentata, the dominant native shrub in western North America. At three sites, soil and root samples from Bromus and Artemisia were collected. Sporulation was induced using trap cultures, and spores were identified using morphological characteristics. DNA was extracted from root and soil subsamples and amplified. Sequences obtained were aligned and analyzed to compare diversity, composition, and phylogenetic distance between hosts and sites. Richness of AMF species associated with Artemisia in cultures was higher than AMF species associated with Bromus. Gamma diversity was similar and beta diversity was higher in AMF associated with Bromus compared to Artemisia. AMF community composition differed between hosts in both cultures and roots. Two AMF species (Archaeospora trappei and Viscospora viscosum) associated more frequently with Artemisia than Bromus across multiple sites. AMF communities in Bromus roots were more phylogenetically dispersed than in Artemisia roots, indicating a greater competition for resources within the invasive grass. Bromus associated with an AMF community that differed from Artemisia in a number of ways, and these changes could restrict native plant establishment.  相似文献   

7.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

8.
Communities dominated by Artemisia tridentata ssp. tridentata, A. tridentata ssp. wyomingensis, and A. tridentata ssp. vaseyana, found in the Piceance Basin of western Colorado, were evaluated for life history strategy. Species cover data were analyzed using Grime's (1984) triangular model. Then a canonical analysis was conducted to obtain an ordination of relative species cover. Results from these two analyses were then used to infer strategy differences among life histories of subspecies, based on the respective plant community associates. These differences were found to be consistent with the divergent evolution assumed to have occurred in this species. The primary ordination axis was interpreted as an elevation-moisture gradient. Further analysis of soil data by factor analysis also separated the three Artemisia subspecies along a soil texture gradient.  相似文献   

9.
Premise of the study: Hybridization has played an important role in the evolution and ecological adaptation of diploid and polyploid plants. Artemisia tridentata (Asteraceae) tetraploids are extremely widespread and of great ecological importance. These tetraploids are often taxonomically identified as A. tridentata subsp. wyomingensis or as autotetraploids of diploid subspecies tridentata and vaseyana. Few details are available as to how these tetraploids are formed or how they are related to diploid subspecies. • Methods: We used amplicon sequencing to assess phylogenetic relationships among three recognized subspecies: tridentata, vaseyana, and wyomingensis. DNA sequence data from putative genes were pyrosequenced and assembled from 329 samples. Nucleotide diversity and putative haplotypes were estimated from the high-read coverage. Phylogenies were constructed from Bayesian coalescence and neighbor-net network analyses. • Key results: Analyses support distinct diploid subspecies of tridentata and vaseyana in spite of known hybridization in ecotones. Nucleotide diversity estimates of populations compared to the total diversity indicate the relationships are predominately driven by a small proportion of the amplicons. Tetraploids, including subspecies wyomingensis, are polyphyletic occurring within and between diploid subspecies groups. • Conclusions: Artemisia tridentata is a species comprising phylogenetically distinct diploid progenitors and a tetraploid complex with varying degrees of phylogenetic and morphological affinities to the diploid subspecies. These analyses suggest tetraploids are formed locally or regionally from diploid tridentata and vaseyana populations via autotetraploidy, followed by introgression between tetraploid groups. Understanding the phylogenetic vs. ecological relationships of A. tridentata subspecies will have bearing on how to restore these desert ecosystems.  相似文献   

10.
Phytoremediation is a potentially inexpensive alternative to chemical treatment of hydrocarbon-contaminated soils, but its success depends heavily on identifying factors that govern the success of root-associated microorganisms involved in hydrocarbon degradation and plant growth stimulation. Arbuscular mycorrhizal fungi (AMF) form symbioses with many terrestrial plants, and are known to stimulate plant growth, although both species identity and the environment influence this relationship. Although AMF are suspected to play a role in plant adaptation to hydrocarbon contamination, their distribution in hydrocarbon-contaminated soils is not well known. In this study, we examined how AMF communities were structured within the rhizosphere of 11 introduced willow cultivars as well as unplanted controls across uncontaminated and hydrocarbon-contaminated soils at the site of a former petrochemical plant. We obtained 69 282 AMF-specific 18S rDNA sequences using 454-pyrosequencing, representing 27 OTUs. Contaminant concentration was the major influence on AMF community structure, with different AMF families dominating at each contaminant level. The most abundant operational taxonomic unit in each sample represented a large proportion of the total community, and this proportion was positively associated with increasing contamination, and seemingly, by planting as well. The most contaminated soils were dominated by three phylotypes closely related to Rhizophagus irregularis, while these OTUs represented only a small proportion of sequences in uncontaminated and moderately contaminated soils. These results suggest that in situ inoculation of AMF strains could be an important component of phytoremediation treatments, but that strains should be selected from the narrow group that is both adapted to contaminant toxicity and able to compete with indigenous AMF species.  相似文献   

11.
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.  相似文献   

12.

Background and aims

We investigated the genetic diversity of arbuscular mycorrhizal fungi (AMF) in soils and the roots of Phalaris aquatica L., Trifolium subterraneum L., and Hordeum leporinum Link growing in limed and unlimed soil, the influence of lime application on AMF colonization and the relationship between AMF diversity and soil chemical properties.

Methods

The sampling was conducted on a long-term liming experimental site, established in 1992, in which lime was applied every 6 years to maintain soil pH (in CaCl2) at 5.5 in the 0–10 cm soil depth. Polymerase chain reaction, cloning and sequencing techniques were used to investigate the diversity of AMF.

Results

Altogether, 438 AMF sequences from a total of 480 clones were obtained. Sequences of phylotypes Aca/Scu were detected exclusively in soil, while Glomus sp. (GlGr Ab) and an uncultured Glomus (UnGlGr A) were detected only in plant roots. Glomus mosseae (GlGr Aa) was the dominant AMF in the pastures examined; however, the proportion of G. mosseae was negatively correlated with soil pH, exchangeable Ca and available P. Generally, diversity of the AMF phylotypes was greater in the bulk unlimed soil and plants from this treatment when compared to the limed treatments.

Conclusions

Long-term lime application changed soil nutrient availability and increased AMF colonization, but decreased AMF phylotype diversity, implying that soil chemistry may determine the distribution of AMF in acid soils. Future studies are required to explore the functions of these AMF groups and select the most efficient AMF for sustainable farming in acid soils.  相似文献   

13.
The main objective of this study was to shed light on the previously unknown arbuscular mycorrhizal fungal (AMF) communities in Southern Arabia. We explored AMF communities in two date palm (Phoenix dactylifera) plantations and the natural vegetation of their surrounding arid habitats. The plantations were managed traditionally in an oasis and according to conventional guidelines at an experimental station. Based on spore morphotyping, the AMF communities under the date palms appeared to be quite diverse at both plantations and more similar to each other than to the communities under the ruderal plant, Polygala erioptera, growing at the experimental station on the dry strip between the palm trees, and to the communities uncovered under the native vegetation (Zygophyllum hamiense, Salvadora persica, Prosopis cineraria, inter-plant area) of adjacent undisturbed arid habitat. AMF spore abundance and species richness were higher under date palms than under the ruderal and native plants. Sampling in a remote sand dune area under Heliotropium kotschyi yielded only two AMF morphospecies and only after trap culturing. Overall, 25 AMF morphospecies were detected encompassing all study habitats. Eighteen belonged to the genus Glomus including four undescribed species. Glomus sinuosum, a species typically found in undisturbed habitats, was the most frequently occurring morphospecies under the date palms. Using molecular tools, it was also found as a phylogenetic taxon associated with date palm roots. These roots were associated with nine phylogenetic taxa, among them eight from Glomus group A, but the majority could not be assigned to known morphospecies or to environmental sequences in public databases. Some phylogenetic taxa seemed to be site specific. Despite the use of group-specific primers and efficient trapping systems with a bait plant consortium, surprisingly, two of the globally most frequently found species, Glomus intraradices and Glomus mosseae, were not detected neither as phylogenetic taxa in the date palm roots nor as spores under the date palms, the intermediate ruderal plant, or the surrounding natural vegetation. The results highlight the uniqueness of AMF communities inhabiting these diverse habitats exposed to the harsh climatic conditions of Southern Arabia.  相似文献   

14.
Cheatgrass (Bromus tectorum L.), an invasive annual grass, is displacing native species and causing increased fire frequency in the Great Basin of the southwestern United States. Growth and nitrogen uptake patterns by cheatgrass were examined in a greenhouse study using soils from sites with the same soil type but different fire histories: 1) an area that burned in 1999 that is now completely invaded with cheatgrass (CG); 2) an area that has not burned recently and is now dominated by Wyoming big sagebrush (Artemisia tridentatassp.wyomingensis Beetle and Young) and Sandberg’s bluegrass (Poa secunda J. Presl) (WBS); and 3) a Wyoming big sagebrush area that burned in August of 2008 just prior to soil collection (NB). Cheatgrass seedlings had higher leaf numbers, height and mass in the NB soil. Ammonium-N mobilized by fire in the NB soil had significantly enriched 15N than soils from CG or WBS sites and this pattern was reflected in the isotopic signatures of the plants. Fire-mobilized mineral N accounted for only 58% of N taken up by cheatgrass in the NB soil, suggesting fire enhanced the ability of cheatgrass to assimilate more recalcitrant soil organic N.  相似文献   

15.
Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a ‘terra firme forest’ in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.  相似文献   

16.
Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected.  相似文献   

17.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

18.
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) from the rhizosphere of the endemic Laurisilva tree, Picconia azorica, were characterised at two sites in each of two Azorean islands (Terceira and São Miguel). Forty-six spore morphotypes were found, and DNA extraction was attempted from individual spores of each of these. DNA was obtained from 18 of the morphotypes, from which a 1.5 kb long fragment of the nuclear ribosomal RNA gene (SSU-ITS-LSU) was sequenced. A total of 125 AMF sequences were obtained and assigned to 18 phylotypes. Phylogenetic analysis revealed sequences belonging to the families, Acaulosporaceae, Archaeosporaceae, Claroideoglomeraceae, Gigasporaceae and Glomeraceae. Phylotype richness changed between islands and between sampling sites at both islands suggesting that geographical and historical factors are determinant in shaping AMF communities in native forest of Azores. Ecological analysis of the molecular data revealed differences in AMF community composition between islands. In Terceira, the rhizosphere of P. azorica was dominated by species belonging to Acaulosporaceae and Glomeraceae, while São Miguel was dominated by members of Glomeraceae and Gigasporaceae. This is the first molecular study of AMF associated with P. azorica in native forest of the Azores. These symbiont fungi are key components of the ecosystem. Further research is needed to develop their use as promoters of plant establishment in conservation and restoration of such sites.  相似文献   

20.
Benthic cyanobacterial communities from Guadarrama River (Spain) biofilms were examined using temperature gradient gel electrophoresis (TGGE), comparing the results with microscopic analyses of field-fixed samples and the genetic characterization of cultured isolates from the river. Changes in the structure and composition of cyanobacterial communities and their possible association with eutrophication in the river downstream were studied by examining complex TGGE patterns, band extraction, and subsequent sequencing of 16S rRNA gene fragments. Band profiles differed among sampling sites depending on differences in water quality. The results showed that TGGE band richness decreased in a downstream direction, and there was a clear clustering of phylotypes on the basis of their origins from different locations according to their ecological requirements. Multivariate analyses (cluster analysis and canonical correspondence analysis) corroborated these differences. Results were consistent with those obtained from microscopic observations of field-fixed samples. According to the phylogenetic analysis, morphotypes observed in natural samples were the most common phylotypes in the TGGE sequences. These phylotypes were closely related to Chamaesiphon, Aphanocapsa, Pleurocapsa, Cyanobium, Pseudanabaena, Phormidium, and Leptolyngbya. Differences in the populations in response to environmental variables, principally nutrient concentrations (dissolved inorganic nitrogen and soluble reactive phosphorus), were found. Some phylotypes were associated with low nutrient concentrations and high levels of dissolved oxygen, while other phylotypes were associated with eutrophic-hypertrophic conditions. These results support the view that once a community has been characterized and its genetic fingerprint obtained, this technique could be used for the purpose of monitoring rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号