首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Florida Scrub-Jay is a monogamous cooperative breeder in which both males and females display extensive structurally based blue plumage. Juveniles of this species exhibit blue tail and wing feathers that they begin growing as nestlings, and some of these feathers are retained throughout their first year. Although the birds appear to be sexually monochromatic, we assessed whether cryptic dichromatism exists in both the magnitude and pattern of coloration in tail feathers of juvenile Florida Scrub-Jays. We then determined whether variation in plumage coloration is associated with nutritional condition during molt. Tails of juvenile male Florida Scrub-Jays exhibit a greater proportion of UV reflectance than those of females. Mass at age 11 days and ptilochronology of the juvenile tail feathers were used as measures of individual nutritional condition during feather growth, and the latter was found to be positively associated with UV chroma. These data demonstrate that Florida Scrub-Jays are sexually dichromatic and suggest that variation in plumage color may be condition dependent, although we cannot rule out alternative explanations. Juvenile plumage coloration, therefore, has the potential to function as a signal of individual quality in both males and females.  相似文献   

2.
Air pollution fades the plumage of the Great Tit   总被引:5,自引:0,他引:5  
1. Great Tits ( Parus major ) derive the carotenoid pigments for their yellow plumage via the prey items in their diet. Air pollution is known to affect the abundance of many forest insects, e.g. green caterpillars, which are an important source of food and pigments for tits. This study investigates whether air pollutants indirectly affected the intensity of the yellow colour in P. major plumage via the reduced access to carotenoid sources.
2. The intensity of the yellow colour in the plumage of P. major nestlings was scored and the relative abundance of green herbivorous larvae in territories around a polluting copper smelter in SW Finland was simultaneously measured.
3. Both the intensity of yellow colour in nestling plumage and caterpillar abundance increased with increasing distance from the pollution source. The colour intensity correlated significantly with the density of green herbivorous larvae in a territory.
4. Parus major nestlings were significantly heavier at distant sites than close to the pollution source which suggests that the future survival probability of pale nestlings may be lowered.
5. Young birds, after their first moult, were studied for the relationships between condition, size and plumage colour by the means of ptilochronology. The plumage colour intensity did not correlate with the size corrected width of the growth bars in fifth rectrix (condition at moult) but was correlated positively with the length of the rectrix (size).
6. The implications of colour change for survival and mate choice are discussed.  相似文献   

3.
Juveniles of several passerine species renew all of their fresh juvenile feathers immediately after fledging (complete post‐juvenile moult), in contrast to the majority, which perform a partial post‐juvenile moult. To understand the adaptive roles of this phenomenon we compared the quality of juvenile plumage in species that perform a complete post‐juvenile moult with that of species which perform a partial post‐juvenile moult; we similarly compared juveniles and adults in each of these groups. The quality of feathers was measured by mass of primaries, colour, and length. In species which perform a complete post‐juvenile moult the plumage quality of second‐year individuals, in their first breeding season, is similar to the plumage quality of adults, unlike those species that perform a partial post‐juvenile moult. In species which perform complete post‐juvenile moult, the quality of the feathers grown in the nest is lower than the quality of adult post‐breeding feathers. In contrast, in species which perform partial post‐juvenile moult the quality of the feathers grown in the nest is similar to that of adult post‐breeding feathers. We found that a complete post‐juvenile moult strategy is much more common 1) in residents and short‐distance migrants than in long‐distance migrants, 2) in southern latitudes, 3) in species with medium body mass and 4) in omnivores and granivores. Our results indicate two adaptive roles of the complete post‐juvenile moult strategy: 1) achieving high quality plumage in the first year which may increase individual survival probability and fitness and 2) allocating fewer resources to nestling plumage and more to nestling development, which enables the nestlings to leave the nest earlier, thus reducing the probability of encountering nest predators. We suggest that the complete post‐juvenile moult, immediately after fledging, is an optimal strategy in favourable habitats and under low time constraints, as in some tropical ecosystems.  相似文献   

4.
Growth bands and fault bars, widespread features of feathers that form during regeneration, have largely been studied independently. Growth bands result from normal regeneration: each pair of dark/light bands forms every 24 h. Fault bars are a response to stress during regeneration, creating a translucent line that can break the feather. We studied the relative position and width of these two structures in feathers of nestling and adult white storks Ciconia ciconia. We first confirmed that one growth band represents 24 h of feather regeneration. Fault bars did not occur at random within growth bands: 65.7% (in nestlings) and 45.6% (in adults) of them occurred in one out of six defined segments within a growth band, namely that segment corresponding to the first one‐third of night time hours. The width of fault bars relative to growth bands suggested that fault bars were produced during a median (range) of 7.0 h (2.7–27.0) in nestlings and 3.7 h (1.8–7.9) in adults. Fault bars were concentrated at feather tips in nestlings, but at central locations in adult feathers. Our results suggest that, in general, fault bars are a discrete event of a finite duration occurring mainly during the night (particularly in nestlings). This, along with current knowledge, suggests that acute stressors, rather than chronic ones, are responsible for fault bar formation. Thus, such acute punctual stressors (a matter of minutes) can have long‐lasting (months?years) physiological effects due to the wing load increase from feather breakage caused by fault bars.  相似文献   

5.
Edmund  Wyndham 《Ibis》1981,123(2):145-157
In captive Budgerigars Melopsitticus undulatus moult of primaries started in the middle of the tract and moved progressively inwards and outwards, the inner feathers being replaced faster than the outer ones. Full replacement of primaries took six to eight months and a new cycle of moult usually started before completion of the old cycle. Moult of secondaries followed no clear pattern and occurred less frequently than moult of primaries. Moult of rectrices started with the middle pair and moved progressively outwards on both sides. Complete moult of rectrices took about six months and a new cycle often started before completion of the old. Moult of the head and body occurred intermittently throughout the year. Birds fledged in juvenal plumage, they passed into first basic plumage with a partial moult (head and body feathers) and into definitive basic plumage with a moult of all contour feathers.
In the field in inland mid-eastern Australia, there were some birds replacing feathers and some with complete plumage in most months of the year. Birds with complete plumage may have been between moults or within a moult and between replacement of feathers. The proportion of birds in moult did not increase in intensity after breeding, or cease during breeding or before movements. Some birds of both sexes with gonads in a reproductive condition were replacing feathers. Rirds that were replacing feathers had similar lipid deposits to birds that had a complete plumage.  相似文献   

6.
《Ostrich》2013,84(1-2):73-77
The pied plumage of the adult Black Sparrowhawk is rather exceptional in the genus Accipiter and it could be explained by functionality or by phylogenetic relationships. The moult pattern of museum specimens is presented, supplementing information from captive birds. The post-juvenile moulting sequence is similar to that of the Northern Goshawk. The moult of primaries starts at, or just after, the beginning of body moult; moult of the secondaries also starts early and progresses from three consecutive foci, and tail moult starts early but is less predictable. A few body feathers and tail feathers may remain in place until the second moult. The pied flank feathers appear at an early stage. Some adult specimens are in arrested annual moult. Two with definite serially-descendant moult were discovered; this is related to the fact that the species is known to be double-brooded. Serially descendant moult was not known in this species and is rarely mentioned in the genus. Possible functions of the pied plumage are discussed: crypsis, mimicry, hunting strategy, and sexual attraction. Its taxanomic status is obscure. Although the streaked juvenile plumage of the Black Sparrowhawk is similar to those of the Northern Goshawk A. gentilis, Meyer's Goshawk A. meyerianus and Henst's Goshawk A. hentsi, adult and juvenile plumages are variable within the genus, and thus are not a reliable indicator of taxanomic relationships.  相似文献   

7.
Although the condition‐dependence and signaling function of ornamental plumage coloration among adult males is well studied, less research has focused on the information content of ornamental coloration among juvenile birds. Eastern Bluebird (Sialia sialis) nestlings grow their nuptial plumage while in the nest and dependent on parents for food, making them an ideal species for studying the development and function of elaborate plumage. Previous research suggests that plumage brightness of Eastern Bluebirds functions, in the juvenile stage, in parent–offspring interactions as a sexually selected trait in adults. Using an experimental approach, we tested the effects of supplemental food on the structural plumage coloration (i.e., tips of primary feathers) of Eastern Bluebird nestlings in Watauga County, North Carolina, during the 2011 breeding season. We provided supplemental mealworms daily to breeding pairs from the onset of incubation through the nestling period, and measured plumage brightness, UV chroma, and mass of nestlings (N = 89 males and 71 females). Male nestlings of supplementally fed parents exhibited brighter plumage. The mass and UV chroma of young bluebirds were not significantly affected by food supplementation. However, the relationship between mass and brightness differed between male nestlings in the control and supplementally fed treatments. Males reared in food‐supplemented territories exhibited a positive relationship between color and mass. Nestlings in control territories, however, exhibited a negative relationship between size and brightness, suggesting that reduced food availability results in a tradeoff between allocating resources toward somatic growth and development of bright plumage. Our results suggest that UV‐blue structural plumage in male juvenile Eastern Bluebirds is at least partially condition‐dependent and may help to explain why plumage color can influence social interactions in Eastern Bluebirds.  相似文献   

8.
D. J. Pearson 《Ibis》1984,126(1):1-15
Moult data were collected during 1967–80 from some 6900 Little Stints in the southern Kenyan rift valley.
Adults typically moulted from summer to winter body and head plumage during September and early October, soon after arrival. The complete pre-winter wing and tail moult began in most adults between mid-September and early October. Some birds finished by December, but others continued until February and March. Individual duration was usually between 100 and 150 days. Adults which completed this moult early often remoulted outer primaries between January and early April.
Young birds acquired first-winter body plumage during October and early November. Some 90% had a complete pre-winter wing and tail moult. This usually began between December and early February, and finished during March or early April, taking about 70–100 days. In about 10% of young birds, flight feather moult was restricted to the outer primaries and inner secondaries. Birds adopting this strategy typically began moult late, during January or February. Short periods of suspension were common during pre-winter wing moult, particularly in adults. The difference in moult speed between adult arid first-winter birds was attributable in the primary, secondary and tail tracts to differences in numbers of growing feathers.
Practically all birds completed a pre-summer moult involving the entire body and head plumage, most of the tertials, some or all of the tail feathers and many wing coverts. Most birds began this moult between early February and late March, and finished between mid-April and early May. It was typically later and more rapid in first-year birds than adults. In late birds, the onset of pre-summer moult was linked to the final stages of pre-winter moult.
The wing moult of the Little Stint in different wintering areas is discussed. First-winter moult strategy is compared with that in other small Calidris species.  相似文献   

9.
We hypothesized that Blue Tits Cyanistes caeruleus and Great Tits Parus major from low quality habitat (small woods) would have less yellow ventral plumage than those from high quality habitat (large woods) because they moult faster and/or their diet contains fewer carotenoids. They moult faster because they moult later in the season and are subject to more rapidly shortening daylengths. We tested this using a database of the plumage coloration (chroma, hue and lightness) of birds breeding in woods of different sizes, by manipulating the speed of moult in captive Blue Tits, and by counting the abundance and size of caterpillars (the major source of dietary carotenoids) in the diet of nestlings. In accordance with our hypothesis, juveniles of both species (which moult about three weeks later than adults) were about 8% less saturated in colour (lower chroma) than adults, but there was no significant difference in chroma between habitats. However, both species did differ significantly in hue between large and small woods. Blue Tits forced to moult faster in captivity, at a rate similar to that caused by a month's delay in the start of moult, had yellow flank feathers that were 32% less saturated in colour than those allowed to moult more slowly. Blue Tit nestlings in large woods consumed 47% more caterpillar flesh (per gram of faecal material voided) than those in small woods, and Great Tit pulli 81% more. When habitat effects were controlled for in ANOVAs, Blue Tits mated assortatively on the basis of flank hue and Great Tits on the basis of flank lightness. Flank colour therefore has the capacity to provide information about the potential quality of both habitats, and individual birds, to potential colonists and sexual partners.  相似文献   

10.
THE MOULT OF THE BULLFINCH PYRRHULA PYRRHULA   总被引:1,自引:0,他引:1  
I. Newton 《Ibis》1966,108(1):41-67
The distribution of feather tracts and their sequence of moult in the Bullfinch is described. The adult post-nuptial moult, which is complete, lasted 10–12 weeks, and the post-juvenile moult, which is partial, 7–9 weeks. Adult moult began with the shedding of the first (innermost) primary and ended with the replacement of the last. Variations in the rate of moult in the flight feathers were mainly achieved, not by changes in the growth rates of individual feathers, but in the number of feathers growing concurrently. The primaries were shed more slowly, and the onset of body moult delayed, in birds which were still feeding late young. In 1962, the onset of moult in the adults was spread over 11 weeks from thc end of July to the beginning of October, and in the two following years over the six weeks, from the end of July to the beginning of September. The onset of moult was delayed by late breeding, which itself occurred in response to a comparative abundance of food in late summer, markedly in 1962. In all years, the first juveniles to moult started at the end of July, and the last, three weeks after the latest adults. Juveniles moulting late in the season retained more juvenile feathers than those moulting earlier. During moult, adult and juvenile Bullfinches produce feathers equivalent to 40% and 33% respectively of their dry weights. In both, for much of the moult, an average of nearly 40 mgm. of feather material—some 0.6% of their dry-weight–is laid down each day. The remiges of the adult comprise only a seventh of the weight of the entire plumage, and it is suggested that their protracted moult results not so much from their energy requirements, as from the need to maintain efficient flight. Variation in the rate of moult in the remiges was much less pronounced than in the body feathers. Bullfinches were less active during moult than at other times of the year. The weights of both adults and juveniles increased during moult. The food during the moult period is described. In all years, most Bullfinches finished moulting just before food became scarce, even though this occurred at different times in different years. In one year, adults moulting latest in the season probably survived less well than those moulting earlier; the same was apparently true of the juveniles in all years. The timing of moult in the Bullfinch, and the factors initiating it, are discussed in relation to the breeding season and foodsupply near Oxford.  相似文献   

11.
《Journal of avian biology》2017,48(3):362-370
In animals, events occurring early in life can have profound effects on subsequent life‐history events. Early developmental stresses often produce negative long‐lasting impacts, although positive effects of mild stressors have also been documented. Most studies of birds have investigated the effects of events occurring at early developmental stages on the timing of migration or reproduction, but little is known on the long‐term effects of these early events on moulting and plumage quality. We exposed European starling Sturnus vulgaris nestlings to an immune challenge to assess the effects of a developmental stress on the timing of the first (post‐juvenile) and second (post‐breeding) complete annual moult, the length of the flight feathers, and the length and colouration of ornamental throat feathers. The nestlings were transferred to indoor aviaries before fledgling and kept in captivity until the end of post‐breeding moult. Individuals treated with Escherichia coli lypopolysaccharide (LPS) started both moult cycles earlier compared to control siblings. Moult duration was unaffected by the immune challenge, but an advanced moult onset resulted in a longer moult duration. Moreover, female (but not male) throat feather colouration of LPS‐injected individuals showed a reduced UV chroma. We argue that an early activation of the immune system caused by LPS may allow nestlings to better cope with post‐fledging stresses and lead to an earlier moult onset. The effect of early LPS exposure was remarkably persistent, as it was still visible more than one year after the treatment, and highlighted the importance of early developmental stresses in shaping subsequent major life‐history traits, including the timing of moult in birds.  相似文献   

12.
After years of investigation into the function of sexually dimorphic ornamental traits, researchers are beginning to understand how bright plumage colour in birds acts as an intraspecific signal. This work has focused primarily on pigment-based ornaments because they are highly variable in patch size, hue and brightness for some species. In contrast, structurally based ornaments have been little studied, in part because they do not appear to be as variable as pigment-based ornaments. We investigated a structurally based plumage ornament in a wild population of blue grosbeaks (Guiraca caerulea), a sexually dimorphic passerine. We report plumage variation that extends into the ultraviolet region of the spectrum. The pattern of covariation between four out of five elements of plumage variation suggests that structurally based ornamentation is pushed towards extreme expression of the trait as predicted by the sexual selection theory. The ''bluest'' birds have the highest percentage of blue feathers on the body. These ornamental feathers reflect light maximally at the shortest wavelengths (ultraviolet), with the greatest intensity and the greatest contrast. Age may have some effect on expression of blueness. In addition, plumage variables are correlated with growth bars in tail feathers (a record of nutritional condition during moult in a non-ornamental trait). This suggests that the ornament is partially condition dependent. Thus, blue plumage in male grosbeaks may serve as an honest indicator of age and quality.  相似文献   

13.
Sexual-selection theory assumes that there are costs associated with ornamental plumage coloration. While pigment-based ornaments have repeatedly been shown to be condition dependent, this has been more difficult to demonstrate for structural colours. We present evidence for condition dependence of both types of plumage colour in nestling blue tits (Parus caeruleus). Using reflectance spectrometry, we show that blue tit nestlings are sexually dichromatic, with males having more chromatic (more 'saturated') and ultraviolet (UV)-shifted tail coloration and more chromatic yellow breast coloration. The sexual dimorphism in nestling tail coloration is qualitatively similar to that of chick-feeding adults from the same population. By contrast, the breast plumage of adult birds is not sexually dichromatic in terms of chroma. In nestlings, the chroma of both tail and breast feathers is positively associated with condition (body mass on day 14). The UV/blue hue of the tail feathers is influenced by paternally inherited genes, as indicated by a maternal half-sibling comparison. We conclude that the expression of both carotenoid-based and structural coloration seems to be condition dependent in blue tit nestlings, and that there are additional genetic effects on the hue of the UV/blue tail feathers. The signalling or other functions of sexual dichromatism in nestlings remain obscure. Our study shows that nestling blue tits are suitable model organisms for the study of ontogenetic costs and heritability of both carotenoid-based and structural colour in birds.  相似文献   

14.
The bright colours of parrots are caused by psittacofulvin pigments, which appear unique to this Order, and by structural colours. We measured red (psittacofulvin), green (mixed) and blue (structural) colours of wild burrowing parrots Cyanoliseus patagonus of northeastern Patagonia, Argentina, and measured nestlings regularly to obtain data on breeding success and nestling growth. As adult feathers are moulted outside the breeding season, adult body condition could not be measured directly during feather growth, and climatic conditions were used as an indirect parameter. The colony of burrowing parrots is surrounded by Monte steppe habitat, the breeding success has been shown to depend strongly on the climatic patterns. The area experienced a drought with very poor breeding success as well as a year of above‐average precipitation during the study period, serving as a natural experiment. We thus analysed the variability of colouration within the population among and within breeding seasons. We observed strong inter‐annual differences in nestling and adult colouration. Nestlings grew blue feathers with lower achromatic brightness during better conditions, and when controlling for year effects, nestlings with higher mass and from more successful families also had blue feathers with lower achromatic brightness. Adult blue feathers showed the same trend, with lower achromatic brightness in the moult following breeding seasons of better conditions. In contrast, during better conditions, adults grew red feathers with higher achromatic brightness and the colour hue was also affected, and the hue of the red region of nestlings varied with the hatching order. The colour of all three regions of nestlings varied between nests, and the colour of the red region of adult males positively correlated with breeding success (clutch size, brood size). In summary, the present data suggest that environmental conditions contribute to variability in both structural and the psittacofulvin‐based colours of wild burrowing parrots.  相似文献   

15.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

16.
Visual signals of quality in offspring, such as plumage colour, should honestly advertise need and/or body condition, but links between nutritional status, physiological performance and the expression of colours are complex and poorly understood. We assess how food stress during rearing affected two physiological measures (T‐cell‐mediated immune function and corticosterone level in feathers: CORTf) and how these two variables were related to carotenoid and melanin coloration in Northern Flicker Colaptes auratus nestlings. We were also interested in how these two physiological measures were influenced by the sex of the nestling. We experimentally manipulated brood size to alter levels of food availability to nestlings during development. We measured carotenoid‐based colour (chroma and brightness) in wing feathers and the size of melanin spots on breast feathers. In agreement with our prediction, nestlings in the reduced brood treatment had better body condition and stronger immune responses than those in the control and brood enlargement treatments. This supports the hypothesis that immune responses are energetically costly. In contrast, CORTf was not related to nestling body condition or sex and was unaffected by brood size manipulation. Nestlings of both sexes with stronger T‐cell‐mediated immune responses had larger melanin spots but only males with higher immune responses also had brighter flight feathers. Feather brightness decreased with increasing CORTf levels. Our study is one of the few to examine the relationship between multiple physiological and plumage measures in nestlings and shows that plumage colour and immune function signalled body condition of nestlings, but that feather corticosterone levels did not.  相似文献   

17.
Ptilochronology is a cost effective tool for determining the nutritional condition of birds. The technique uses the daily growth of feathers to decipher diet and habitat quality as well as contaminant load. To date, most studies using ptilochronology have focused primarily on passerines. The use of the technique in other orders, primarily waterbirds, could lead to a significant increase in their utility as bioindicators of estuarine health. I performed a survey of study skins from the Museum of Natural History in New York, NY and the Smithsonian Natural History Museum in Washington, DC to determine whether feather growth bars are present in waterbird species. Three hundred specimens representing 52 species were examined (orders: Pelicaniformes, Suliformes, Gruiformes). Few species did not possess discernible feather growth-bars, and in one case, this may be attributed to a nocturnal foraging habit. Because the majority of species did exhibit measurable growth-bars, it seems as though ptilochronology can be applied in waterbird studies as an efficient tool for management purposes in estuarine habitats.  相似文献   

18.
Golden plovers and Grey Plovers Pluvialis spp. all have very distinct breeding plumage rich in contrast, with a conspicuous black belly and breast bordered by a bright white fringe. Eurasian Golden Plovers are known partly to replace their breeding plumage with striped yellow feathers during incubation, different from both breeding and non-breeding plumages. In this study a similar partial breeding moult was observed in Pacific Golden Plovers and American Golden Plovers caught on the nest or collected during incubation, although the feathers did not differ clearly from those of non-breeders. This moult starts during incubation and precedes the post-breeding moult into non-breeding plumage. Because the lighter feathers reduce the contrast between the black belly and the white flanks, we suggest that during incubation the plumage characteristic that plays an important role in mate choice is no longer important; at this stage it is better for the bird to be inconspicuous. Additional information on museum skins of golden plovers and of Grey Plovers indicated that only the three golden plovers undergo this partial moult, but that Grey Plovers in general retain full breeding plumage throughout incubation. The three golden plovers also resemble each other in their generally very passive nest defence strategies. In contrast, the larger Grey Plovers actively chase and attack aerial and ground predators. Thus, a reduced conspicuousness of the body plumage during incubation is likely to benefit the golden plovers more than the Grey Plover. We suggest that nest defence behaviour, plumage characteristics and perhaps size have co-evolved as a response to different selection pressures in golden plovers and Grey Plover, but alternative hypotheses are also discussed.  相似文献   

19.
Biannual complete moult in the Black-chested Prinia Prinia flavicans   总被引:2,自引:0,他引:2  
M. HERREMANS 《Ibis》1999,141(1):115-124
The Black-chested Prinia Prinia flavicans shows two distinctive periods each year during which adult birds undergo a complete moult: there is a fast moult (about 67 days) in spring (September-November) involving all birds simultaneously and a slower moult (about 108 days) in autumn (February-June), when about 95% of adults are moulting during April. A biannual complete moult pattern was also shown to occur in individual birds. The pattern of secondary replacement was variable and unusual for a passerine; the majority replaced S8 to S5/S4 descendantly, or had feathers being renewed ascendantly amongst S4-S7 before the ascendant series starting from the outermost secondary reached the middle secondaries. The descendant series tended to be longer during the autumn moult with S4 most frequently being the last to be replaced in autumn, but S5 last in spring. Breeding was erratic during summer in response to rains and sometimes overlapped extensively with moulting, the onset of which was less variably timed. When breeding occurred during the autumn moult, the new plumage was not the usual winter plumage (without the chest-band), but a new summer plumage.  相似文献   

20.
We studied the prebreeding moult and resulting plumage in a long-distance migrant sandpiper (Scolopacidae), the Great Knot Calidris tenuirostris , on the non-breeding grounds (northwest Australia), on arrival at the staging grounds after the first migratory flight (eastern China) and on or near the Russian breeding grounds (Russian data from museum specimens). We show that breeding plumage scores and breast blackness were affected not only by the increase in moulted feathers but also in the wearing down of overlaying pale tips of fresh feathers. Birds migrating from Australia and arriving in China had completed or suspended moult, but more moult must occur in Asia as Russian specimens had moulted more of their mantle and scapular feathers. Russian birds had significantly more red feathering on their upperparts than had birds in Australia or those arriving in China. The increase in reddish feathers cannot by accounted for simply by continuation of the prealternate moult. Instead, a third, presupplemental moult must occur, in which red-marked feathers replace some scapular and especially mantle feathers that were acquired in a prealternate moult only 1–3 months earlier. Great Knot sexes show little size and plumage dimorphism, whereas two other sandpipers that have supplemental plumages (Ruff Philomachus pugnax and Bar-tailed Godwit Limosa lapponica ) are thought to be highly sexually selected. Bidirectional sexual selection may therefore be involved in the evolution of a supplemental plumage in Great Knots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号