首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inorganic arsenic is a strong, widespread human carcinogen. How exactly inorganic arsenic exerts carcinogenicity in humans is as yet unclear, but it is thought to be closely related to its metabolism. At exposure-relevant concentrations arsenic is neither directly DNA reactive nor mutagenic. Thus, more likely epigenetic and indirect genotoxic effects, among others a modulation of the cellular DNA damage response and DNA repair, are important molecular mechanisms contributing to its carcinogenicity. In the present study, we investigated the impact of arsenic on several base excision repair (BER) key players in cultured human lung cells. For the first time gene expression, protein level and in case of human 8-oxoguanine DNA glycosylase 1 (hOGG1) protein function was examined in one study, comparing inorganic arsenite and its trivalent and pentavalent mono- and dimethylated metabolites, also taking into account their cellular bioavailability. Our data clearly show that arsenite and its metabolites can affect several cellular endpoints related to DNA repair. Thus, cellular OGG activity was most sensitively affected by dimethylarsinic acid (DMA(V)), DNA ligase IIIα (LIGIIIα) protein level by arsenite and X-ray cross complementing protein 1 (XRCC1 protein) content by monomethylarsonic acid (MMA(V)), with significant effects starting at ≥3.2μM cellular arsenic. With respect to MMA(V), to our knowledge these effects are the most sensitive endpoints, related to DNA damage response, that have been identified so far. In contrast to earlier nucleotide excision repair related studies, the trivalent methylated metabolites exerted strong effects on the investigated BER key players only at cytotoxic concentrations. In summary, our data point out that after mixed arsenic species exposure, a realistic scenario after oral inorganic arsenic intake in humans, DNA repair might be affected by different mechanisms and therefore very effectively, which might facilitate the carcinogenic process of inorganic arsenic.  相似文献   

2.
Effects of arsenic on DNA synthesis in human lymphocytes were biphasic: either trivalent (arsenic trioxide and sodium arsenite) or pentavalent (sodium arsenate) arsenic compounds at very low concentrations enhanced DNA synthesis in human lymphocytes stimulated by phytohemagglutinin (PHA), whereas higher concentrations inhibited DNA synthesis. There were differences among individual susceptibities to arsenic-induced DNA synthesis. Either stimulating or inhibiting effects of trivalent arsenic on DNA synthesis in PHA-stimulated lymphocytes were always stronger than those of pentavalent arsenic. It was also shown that both trivalent and pentavalent arsenic could be rapidly taken up into the human lymphocytes, and immediately stimulated or inhibited DNA synthesis. A possible dual effect of arsenic at very low concentrations as both comutagen and inhibitor of mutagenesis is discussed.  相似文献   

3.
JN Treas  T Tyagi  KP Singh 《PloS one》2012,7(8):e43880
Chronic exposures to arsenic and estrogen are known risk factors for prostate cancer. Though the evidence suggests that exposure to arsenic or estrogens can disrupt normal DNA methylation patterns and histone modifications, the mechanisms by which these chemicals induce epigenetic changes are not fully understood. Moreover, the epigenetic effects of co-exposure to these two chemicals are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic and estrogen, both alone and in combination, on the expression of epigenetic regulatory genes, their consequences on DNA methylation, and histone modifications. Human prostate epithelial cells, RWPE-1, chronically exposed to arsenic and estrogen alone and in combination were used for analysis of epigenetic regulatory genes expression, global DNA methylation changes, and histone modifications at protein level. The result of this study revealed that exposure to arsenic, estrogen, and their combination alters the expression of epigenetic regulatory genes and changes global DNA methylation and histone modification patterns in RWPE-1 cells. These changes were significantly greater in arsenic and estrogen combination treated group than individually treated group. The findings of this study will help explain the epigenetic mechanism of arsenic- and/or estrogen-induced prostate carcinogenesis.  相似文献   

4.
In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction.

The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occuring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified.  相似文献   


5.
Microsatellite instability.   总被引:5,自引:0,他引:5  
Unlike aneuploidy, considered to be the cardinal feature of malignant tumors ever since the chromosomal analysis of neoplastic cells became technically feasible, a second pathway toward malignancy has emerged over the past decade that is not characterized by gross aneuploidy but, instead, by inactivation of the DNA mismatch repair system, leading to a hypermutable state in which simple repetitive DNA sequences are unstable during DNA replication. Although mutations of many of these microsatellite sequences are presumably innocuous, because they do not occur in the coding or regulatory regions of genes, other such sequences are critically located in the coding regions of genes involved in the regulation of cell growth. First discovered in the rather uncommon hereditary nonpolyposis colorectal cancer syndrome, where there is an inactivating germline mutation in one of the DNA mismatch repair genes and most of the tumors show microsatellite instability, the latter phenomenon has since been implicated in about 15% of sporadic colorectal cancers, as well as in cancers at several other sites, such as the endometrium. Tumors showing microsatellite instability are generally near-diploid, are at a low stage of development, have a favorable prognosis, and, in the colon, are commonly located on the right side. In recent years, epigenetic phenomena, including hypermethylation and loss of imprinting, have come to be recognized as having a significant bearing on the development of these tumors.  相似文献   

6.
The underlying mechanisms of arsenic carcinogenicity are still not fully understood. Mechanisms currently discussed include the induction of oxidative DNA damage and the interference with DNA repair pathways. Still unclear is the role of biomethylation, which has long been considered to be one major detoxification process. Methylated arsenicals have recently been shown to interfere with DNA repair in cellular and subcellular systems, but up to now no DNA repair protein has been identified being particular sensitive towards methylated arsenicals in cultured cells. Here we report that the trivalent methylated metabolites MMA(III) and DMA(III) inhibit poly(ADP-ribosyl)ation in cultured human HeLa S3 cells at concentrations as low as 1nM, thereby showing for the first time an inactivation of an enzymatic reaction related to DNA repair by the trivalent methylated arsenicals at very low environmentally relevant concentrations. In contrast the pentavalent metabolites MMA(V) and DMA(V) showed no such effects up to high micromolar concentrations. All investigated arsenicals did not alter gene expression of PARP-1. However, all trivalent arsenicals were able to inhibit the activity of isolated PARP-1, indicating that the observed decrease in poly(ADP-ribosyl)ation in cultures human cells, predominantly mediated by PARP-1, is likely due to changes in the activity of PARP-1. Since poly(ADP-ribosyl)ation plays a major role in DNA repair, cell cycle control and thus in the maintenance of genomic stability, these findings could in part explain DNA repair inhibition and the genotoxic and carcinogenic effects of arsenic.  相似文献   

7.
Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor dissociation binding techniques, the lifetimes of unidentate (<1s), bidentate (1-2min) and tridentate (1-2h) arsenite containing peptide binding complexes were estimated. According to our experimental data some of the protein targets to which arsenite may bind in vivo include tubulin, poly(ADP-ribose)polymerase (PARP-1), thioredoxin reductase, estrogen receptor-alpha, arsenic(+3)methyltransferase and Keap-1. Arsenite binding to tubulin can lead to several of the genetic effects observed after arsenic exposures (aneuploidy, polyploidy and mitotic arrests). Among many other possible arsenite binding sites are rat hemoglobin, the DNA repair enzyme xeroderma pigmentosum protein A (XPA), and other C2H2, C3H and C4 zinc finger proteins including members of the steroid receptor superfamily (e.g. glucocorticoid receptor). Macromolecules to which arsenite does not bind to include calf thymus DNA, mixed Type II-A histones and bovine H3/H4 histone. Although all six tested arsenicals released iron from ferritin, radioactive arsenite did not bind to the protein horse ferritin.  相似文献   

8.
The precise mechanisms by which nickel and arsenic compounds exert their carcinogenic properties are not completely understood. In recent years, alterations of epigenetic mechanisms have been implicated in the carcinogenesis of compounds of these two metals. In vitro exposure to certain nickel or arsenic compounds induces changes in both DNA methylation patterns, as well as, in the levels of posttranslational modifications of histone tails. Changes in DNA methylation patterns have been reported in human subjects exposed to arsenic. Here we review our recent reports on the alterations in global levels of posttranslational histone modifications in peripheral blood mononuclear cells (PBMCs) of subjects with occupational exposure to nickel and subjects exposed to arsenic in their drinking water. Occupational exposure to nickel was associated with an increase in H3K4me3 and decrease in H3K9me2. A global increase in H3K9me2 and decrease in H3K9ac was found in subjects exposed to arsenic. Additionally, exposure to arsenic resulted in opposite changes in a number of histone modifications in males when compared with females in the arsenic population. The results of these two studies suggest that exposure to nickel or arsenic compounds, and possibly other carcinogenic metal compounds, can induce changes in global levels of posttranslational histone modifications in peripheral blood mononuclear cells.  相似文献   

9.
Chemically induced aneuploidy in mammalian cells in culture   总被引:2,自引:0,他引:2  
Our objectives were to assess whether there exist useful aneuploidy tests in vitro, to identify chemicals that showed potential for mitotic aneuploidy induction, and to recommend some features of suitable protocols for such testing. From over 100 papers we selected 24 for review. The acceptable studies examined hyperdiploidy at metaphase, had concurrent negative controls with low background rates of hyperdiploidy, used a fixation time sufficient for cells to complete more than one cell cycle after treatment and had multiple dose levels with at least 100 cells scored per point. We judged that 12 compounds were positive, 7 inconclusive, and 4 negative with the reservation that 2 of the 4 compounds had not been tested up to toxic doses. Many of the positive compounds are also known to cause structural chromosome aberrations. We separately reviewed qualitative reports of 'C-mitotic' effects, anaphase lagging, multipolar mitoses, or altered DNA content, since these effects may sometimes by associated with aneuploidy induction. No well-validated in vitro aneuploidy assay exists, and much research is required to develop tests, perhaps using chromosome counts, DNA content, or effects on cell organelles necessary for mitosis. In test protocol development we should carefully consider choice of cell sample size, use of in vitro metabolic activation systems, and selection of doses, especially with regard to the problem of whether cytotoxic concentrations should be used.  相似文献   

10.
Molecular mechanisms of arsenic carcinogenesis   总被引:24,自引:0,他引:24  
Arsenic is a metalloid compound that is widely distributed in the environment. Human exposure of this compound has been associated with increased cancer incidence. Although the exact mechanisms remain to be investigated, numerous carcinogenic pathways have been proposed. Potential carcinogenic actions for arsenic include oxidative stress, genotoxic damage, DNA repair inhibition, epigenetic events, and activation of certain signal transduction pathways leading to abberrant gene expression. In this article, we summarize current knowledge on the molecular mechanisms of arsenic carcinogenesis with an emphasis on ROS and signal transduction pathways.  相似文献   

11.
Whether exposure to radiation emitted from cellular phones poses a health hazard is at the focus of current debate. We have examined whether in vitro exposure of human peripheral blood lymphocytes (PBL) to continuous 830 MHz electromagnetic fields causes losses and gains of chromosomes (aneuploidy), a major "somatic mutation" leading to genomic instability and thereby to cancer. PBL were irradiated at different average absorption rates (SAR) in the range of 1.6-8.8 W/kg for 72 hr in an exposure system based on a parallel plate resonator at temperatures ranging from 34.5-37.5 degrees C. The averaged SAR and its distribution in the exposed tissue culture flask were determined by combining measurements and numerical analysis based on a finite element simulation code. A linear increase in chromosome 17 aneuploidy was observed as a function of the SAR value, demonstrating that this radiation has a genotoxic effect. The SAR dependent aneuploidy was accompanied by an abnormal mode of replication of the chromosome 17 region engaged in segregation (repetitive DNA arrays associated with the centromere), suggesting that epigenetic alterations are involved in the SAR dependent genetic toxicity. Control experiments (i.e., without any RF radiation) carried out in the temperature range of 34.5-38.5 degrees C showed that elevated temperature is not associated with either the genetic or epigenetic alterations observed following RF radiation-the increased levels of aneuploidy and the modification in replication of the centromeric DNA arrays. These findings indicate that the genotoxic effect of the electromagnetic radiation is elicited via a non-thermal pathway. Moreover, the fact that aneuploidy is a phenomenon known to increase the risk for cancer, should be taken into consideration in future evaluation of exposure guidelines.  相似文献   

12.
Inorganic arsenic enhances skin tumor formation when combined with other carcinogens including ultraviolet radiation (UVR). The inhibition of DNA damage repair by arsenic has been hypothesized to contribute to the cocarcinogenic activities of arsenic observed in vivo. Cyclobutane pyrimidine dimers (CPDs) are an important mutagenic UVR photoproduct and implicated in the genesis of nonmelanoma skin cancer. The current study demonstrates that low concentrations of arsenite (As(III)) inhibit UVR-induced CPD repair in a human keratinocyte cell line via nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Following As(III) treatment, NO production and iNOS expression are elevated. Little is known about regulation of iNOS by As(III) and further investigations indicated that p38 mitogen-activated protein kinase (p38 MAPK) and NF-kappaB are required for As(III) induction of iNOS expression. This As(III)-stimulated signaling cascade was involved in inhibition of UVR-induced CPD repair as disruption of p38 MAPK activity and NF-kappaB nuclear translocation counteracted the effects of As(III) on CPD repair. Selective inhibition of iNOS ameliorated As(III) inhibition of CPD repair, thereby suggesting that iNOS is a downstream mediator of As(III) activity. These findings provide evidence that an As(III)-stimulated signal transduction cascade culminating in elevated iNOS expression and NO generation is an underlying mechanism for inhibition of UVR-induced DNA damage repair by arsenic.  相似文献   

13.
Mercury and arsenic are known developmental toxicants. Prenatal exposures are associated with adverse childhood health outcomes that could be in part mediated by epigenetic alterations that may also contribute to altered immune profiles. In this study, we examined the association between prenatal mercury exposure on both DNA methylation and white blood cell composition of cord blood, and evaluated the interaction with prenatal arsenic exposure. A total of 138 mother-infant pairs with postpartum maternal toenail mercury, prenatal urinary arsenic concentrations, and newborn cord blood were assessed using the Illumina Infinium Methylation450 array. White blood cell composition was inferred from DNA methylation measurements. A doubling in toenail mercury concentration was associated with a 2.5% decrease (95% CI: 5.0%, 1.0%) in the estimated monocyte proportion. An increase of 3.5% (95% CI: 1.0, 7.0) in B-cell proportion was observed for females only. Among the top 100 CpGs associated with toenail mercury levels (ranked on P-value), there was a significant enrichment of loci located in North shore regions of CpG islands (P = 0.049), and the majority of these loci were hypermethylated (85%). Among the top 100 CpGs for the interaction between arsenic and mercury, there was a greater than expected proportion of loci located in CpG islands (P = 0.045) and in South shore regions (P = 0.009) and all of these loci were hypermethylated. This work supports the hypothesis that mercury may be contributing to epigenetic variability and immune cell proportion changes, and suggests that in utero exposure to mercury and arsenic, even at low levels, may interact to impact the epigenome.  相似文献   

14.
Aneuploidy is the most frequent aberration observed in tumor cells, and underlies many debilitating and cancer-prone congenital disorders. Aneuploidy most often arises as a consequence of chromosomal non-disjunction, however, little is known about the genetic and epigenetic factors that affect the chromosomal segregation process. As many cancer-prone syndromes are associated with defects in DNA repair pathways we decided to investigate the relationship between DNA repair in mutation avoidance pathways, namely base and nucleotide excision, and mismatch repair (MMR), and aneuploidy in the yeast Saccharomyces cerevisiae. Isogenic haploid and diploid DNA repair deficient yeast strains were constructed, and spontaneous levels of intra- and inter-chromosomal recombination, forward mutation, chromosome gain, and loss were measured. We show that the nucleotide excision repair (NER) pathway is required for accurate chromosomal disjunction. In the absence of Rad1, Rad2, or Rad4, spontaneous levels of chromosome XV gain were significantly elevated in both haploid and diploid mutant strains. Thus, chromosome gain may be an additional cancer predisposing event in NER deficient patients.  相似文献   

15.
The concept of a threshold of activity of a genotoxic agent is primarily based upon considerations of protective mechanisms and multiple cellular targets, which require inactivation before a toxic response is produced. In this paper, we have considered and evaluated the influences of compound metabolism, DNA lesion formation, mutation induction and sequence content, aneuploidy induction and the influence of repair enzymes upon genetic endpoints produced by both DNA reactive chemicals and by those chemicals which modify non-DNA cellular targets. Thresholds of activity have been evaluated by critical analysis of the published literature and original data analysing both the role of sequence context upon point mutation induction and DNA repair mechanisms upon the sensitivity of cultured cells to the induction of aneuploidy. In the case of DNA reactive chemicals, the presence of a threshold of chemical activity will be dependent upon cellular activities such as those of the Phase II enzymes reducing the activity of chemicals before lesion formation takes place and/or those of the DNA repair enzymes which reduce the proportion of DNA lesions which are processed into DNA sequence changes. Under such conditions, a given exposure of a DNA reactive chemical does not produce a linear or semi-linear increase in DNA lesions or in mutation frequency. However, even when these protective mechanisms are overwhelmed by the high exposures of genotoxic chemicals the biological effects of a genotoxin may be influenced by the sequence context of the gene under consideration. Here, we demonstrate that point mutations are detected at relatively higher frequencies in the non-coding introns compared with the coding exons. Many of the base changes detected in the exons do not produce amino acid changes in the proteins coded for by the genes being monitored for mutation induction. Both sequence context and the types of base changes induced may provide a "buffering" effect reducing the biological consequences of mutation induction. Spindle damaging chemicals, such as colcemid and vinblastine, induce aneuploidy by modifying the numbers of spindle fibres which regulate the segregation of chromosomes during mitosis and meiosis. The redundancy of spindle fibres in the dividing mammalian cell leads to the prediction that only chemical exposures which damage most, if not all, of the fibres will lead to the induction of polyploidy and/or aneuploidy. Such predicted thresholds of chemical activity can be observed when both chromosome loss and non-disjunction are measured in wild type cultures. However, we observed a substantial increase in sensitivity to aneugenic chemicals when measurements were made in primary cell cultures derived from xerodoma pigmentosum and trichothiodystrophy patients. Further studies are necessary to evaluate the consequences of the genetic background of tester strains upon the nature of the dose-response curve of aneugenic chemicals.  相似文献   

16.
DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in the pathogenesis of the disorder.  相似文献   

17.
Schwerdtle T  Walter I  Hartwig A 《DNA Repair》2003,2(12):1449-1463
The underlying mechanisms of arsenic carcinogenicity are only poorly understood and especially the role of biomethylation is still a matter of debate. Besides the induction of oxidative DNA damage the interference with DNA repair processes have been proposed to contribute to arsenic-induced carcinogenicity. Within the present study the effects of arsenite and its mono- and dimethylated trivalent and pentavalent metabolites on BPDE-induced DNA adduct formation and repair has been investigated and compared in cultured human lung cells. Whereas only arsenite and MMA(III) increased BPDE-DNA adduct formation, arsenite (>/=5 microM), the trivalent (>/=2.5 microM) and the pentavalent (>/=250 microM) metabolites diminished their repair at non-cytotoxic concentrations. As potential molecular targets, interactions with the zinc finger domain of the human XPA protein (XPAzf) and the Escherichia coli zinc finger protein Fpg, involved in NER and BER, respectively, have been investigated. All trivalent arsenicals were able to release zinc from XPAzf; furthermore, MMA(III) and DMA(III) inhibited the activity of isolated Fpg. Altogether the results suggest that besides arsenite, especially the trivalent methylated metabolites may contribute to diminished NER at low concentrations.  相似文献   

18.
Arsenic contamination is a significant public health issue, and kidney is one of the target organ for arsenic-induced adverse effects. Renal fibrosis is a well-known pathological stage frequently observed in progressive chronic kidney disease (CKD). Epidemiological studies implicate arsenic exposure to CKD, but the role of arsenic in kidney fibrosis and the underlying mechanism is still unclear. It is in this context that the current study evaluated the effects of long-term arsenic exposure on the cellular response in morphology, and marker genes expression with respect to fibrosis using human kidney 2 (HK-2) epithelial cells. Results of this study revealed that in addition to increased growth, HK-2 cells underwent phenotypic, biochemical and molecular changes indicative of epithelial–mesenchymal transition (EMT) in response to the exposure to arsenic. Most importantly, the arsenic-exposed cells acquired the pathogenic features of fibrosis as supported by increased expression of markers for fibrosis, such as Collagen I, Fibronectin, transforming growth factor β, and α-smooth muscle actin. Upregulation of fibrosis associated signaling molecules such as tissue inhibitor of metalloproteinases-3 and matrix metalloproteinase-2 as well as activation of AKT was also observed. Additionally, the expression of epigenetic genes (DNA methyltransferases 3a and 3b; methyl-CpG binding domain 4) was increased in arsenic-exposed cells. Treatment with DNA methylation inhibitor 5-Aza-2′-dC reversed the EMT properties and restored the level of phospho-AKT. Together, these data for the first time suggest that long-term exposure to arsenic can increase the risk of kidney fibrosis. Additionally, our data suggest that the arsenic-induced fibrotic changes are, at least in part, mediated by DNA methylation and therefore potentially can be reversed by epigenetic therapeutics.  相似文献   

19.
20.
The exposure of freshwater mussels Unio tumidus to phenolic compounds (tannic, ellagic and gallic acid) in vivo caused changes in proteins and DNA function of digestive gland cells. The mussels were exposed to various concentrations of tested polyphenols (60, 200 and 500 microM) for 24 and 48 h and their antioxidant and pro-oxidant effects were determined. The number of SH-groups was quantified spectrophotometrically using Ellman's reagent. Oxidative modification of proteins increased in the digestive gland cells in a dose- and time-dependent manner. The level of nuclear DNA damage was investigated using the comet assay. The results revealed that polyphenolic acids induce single and double-strand breaks in DNA. The highest changes were observed for tannic and gallic acids and the smallest ones for ellagic acid. 1h of DNA repair process was also studied using the same method. The data obtained in this experiment demonstrate that the most effective DNA repair occurs in the cells exposed to phenolic compounds for 24h. A longer incubation (up to 48 h) does not decrease the capacity of the repair mechanism. The antioxidant activity of the tested phenols was analyzed spectrofluorimetrically using a fluorescence probe DCFH-DA (dichlorofluorescein-diacetate). The experimental data showed that the tested acids can act as antioxidants when used at higher doses (200 and 500 microM) against the reactive oxygen species present in the digestive gland cells. The most effective was ellagic acid, also applied at the smallest dose of 60 microM, in comparison with tannic and gallic acids. In conclusion, our results demonstrate that chosen water-soluble polyphenols, which are located in various plant tissues and are also found in the aquatic environment, can influence organisms living in the water. They can be exposed to these chemicals that cause morphological alterations and changes in certain physiological processes in their organs (i.e. digestive gland cells of bivalve molluscs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号