首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purposes of this study were to compare the elasticity of tendon and aponeurosis in human knee extensors and ankle plantar flexors in vivo and to examine whether the maximal strain of tendon was correlated to that of aponeurosis. The elongation of tendon and aponeurosis during isometric knee extension (n = 23) and ankle plantar flexion (n = 22), respectively, were determined using a real-time ultrasonic apparatus, while the participants performed ramp isometric contractions up to voluntary maximum. To calculate the strain values from the measured elongation, we measured the respective length of tendon and aponeurosis. For the knee extensors, the maximal strain of aponeurosis (12.1 +/- 2.8 %) was significantly greater than that of the patella tendon (8.3 +/- 2.4 %), p < 0.001. On the contrary, the maximal strain of Achilles tendon (5.9 +/- 1.4 %) was significantly greater than that of aponeurosis in ankle plantar flexors (2.7 +/- 1.4 %), p < 0.001. Furthermore, for both knee extensors and ankle plantar flexors there was no significant correlation between maximal strain of tendon and aponeurosis. These results would be important for understanding the different roles of tendon and aponeurosis during human movements and for more accurate muscle modeling.  相似文献   

2.
Power output and work in different muscle groups during ergometer cycling   总被引:1,自引:0,他引:1  
The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

3.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, the main symptoms of which are hypertonicity and difficulties emerging during performance of stepping movements due to increased muscle stiffness. Biomechanical (stiffness) and electrophysiological (shortening reaction, SR) characteristics of hip and shank muscles were examined in 25 patients with mild and moderate stages of PD (1 to 3 of Hoehn and Yahr Rating Scale, 61 ± 9 years) and 22 age-matched healthy controls in unloading leg conditions during passive flexion/extension of hip, knee, and ankle joints, as well as the changes in the tonic state of muscles under the influence of levodopa. The data obtained were compared with similar findings in healthy subjects. Essentially greater stiffness in all leg muscle groups (except foot extensors) was observed in patients with PD as compared to the healthy subjects. In patients with PD, SR values in hip and shank extensors as well as in foot flexors and extensors were essentially greater then in the healthy subjects. The medicine essentially reduced the stiffness of hip flexors and knee flexors and extensors. The SR persisted, although the frequency of its occurrence decreased in half of studied muscles, and a significant decrease in the SR value was observed in foot extensors. The medicine had no marked effect on the SR in the proximal muscles. Thus, the increased muscle stiffness in patients with PD manifests itself as distorted reactions to external disturbances and increased reflectory reactions of muscles.  相似文献   

4.
The purpose of the present study was to investigate whether the mechanical properties (i.e. force strain relationship) of the triceps surae tendon and aponeurosis relate to the performed sport activity in an intensity-dependent manner. This was done by comparing sprinters with endurance runners and subjects not active in sports. Sixty-six young male subjects (26+/-5 yr; 183+/-6 cm; 77.6+/-6.7 kg) participated in the study. Ten of these subjects were adults not active in sports, 28 were endurance runners and 28 sprinters. All subjects performed isometric maximal voluntary plantar flexion contractions (MVC) on a dynamometer. The distal aponeuroses of the gastrocnemius medialis (GM) was visualised by ultrasound during the MVC. The results showed that only the sprinters had higher normalised stiffness (relationship between tendon force and tendon strain) of the triceps surae tendon and aponeurosis and maximal calculated tendon forces than the endurance runners and the subjects not active in sports. Furthermore, including the data of all 66 examined participants tendon stiffness correlated significantly (r=0.817, P<0.001) with the maximal tendon force achieved during the MVC. It has been concluded that the mechanical properties of the triceps surae tendon and aponeurosis do not show a graded response to the intensity of the performed sport activity but rather remain at control level in a wide range of applied strains and that strain amplitude and/or frequency should exceed a given threshold in order to trigger additional adaptation effects. The results further indicate that subjects with higher muscle strength possibly increase the margin of tolerated mechanical loading of the tendon due to the greater stiffness of their triceps surae tendon and aponeurosis.  相似文献   

5.
ABSTRACT: Bryanton, MA, Kennedy, MD, Carey, JP, and Chiu, LZF. Effect of squat depth and barbell load on relative muscular effort in squatting. J Strength Cond Res 26(10): 2820-2828, 2012-Resistance training is used to develop muscular strength and hypertrophy. Large muscle forces, in relation to the muscle's maximum force-generating ability, are required to elicit these adaptations. Previous biomechanical analyses of multi-joint resistance exercises provide estimates of muscle force but not relative muscular effort (RME). The purpose of this investigation was to determine the RME during the squat exercise. Specifically, the effects of barbell load and squat depth on hip extensor, knee extensor, and ankle plantar flexor RME were examined. Ten strength-trained women performed squats (50-90% 1 repetition maximum) in a motion analysis laboratory to determine hip extensor, knee extensor, and ankle plantar flexor net joint moment (NJM). Maximum isometric strength in relation to joint angle for these muscle groups was also determined. Relative muscular effect was determined as the ratio of NJM to maximum voluntary torque matched for joint angle. Barbell load and squat depth had significant interaction effects on hip extensor, knee extensor, and ankle plantar flexor RME (p < 0.05). Knee extensor RME increased with greater squat depth but not barbell load, whereas the opposite was found for the ankle plantar flexors. Both greater squat depth and barbell load increased hip extensor RME. These data suggest that training for the knee extensors can be performed with low relative intensities but require a deep squat depth. Heavier barbell loads are required to train the hip extensors and ankle plantar flexors. In designing resistance training programs with multi-joint exercises, how external factors influence RME of different muscle groups should be considered to meet training objectives.  相似文献   

6.
In vivo motion of the rectus femoris muscle after tendon transfer surgery   总被引:7,自引:0,他引:7  
Rectus femoris transfer surgery is performed to convert the rectus femoris muscle from a knee extensor to a knee flexor. In this surgery, the distal tendon of the rectus femoris is detached from the patella and reattached to one of the knee flexor tendons. The outcomes of this procedure are variable, and it is not known if the surgery successfully converts the muscle to a knee flexor. We measured the motion of muscle tissue within the rectus femoris and vastus intermedius during knee extension in 10 unimpaired control subjects (10 limbs) and 6 subjects (10 limbs) after rectus femoris transfer using cine phase-contrast magnetic resonance imaging. Displacements of the vastus intermedius during knee extension were similar between control and tendon transfer subjects. In the control subjects, the rectus femoris muscle consistently moved in the direction of the knee extensors and displaced more than the vastus intermedius. The rectus femoris also moved in the direction of the knee extensors in the tendon transfer subjects; however, the transferred rectus femoris displaced less than the vastus intermedius. These results suggest that the rectus femoris is not converted to a knee flexor after its distal tendon is transferred to the posterior side of the knee, but its capacity for knee extension is diminished by the surgery.  相似文献   

7.
《Chronobiology international》2013,30(4-5):645-660
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 ± 5 yrs, height 1.63 ± 0.06 m and body mass 66.26 ± 4.6 kg: mean ± SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14 rad.s?1 (through 90° ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60° of knee flexion. Rectal temperature was measured during 30 min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P < 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05 rad.s?1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05 rad.s?1, extensors at 3.14 rad.s?1, and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

8.
Diurnal variation in muscle performance has been well documented in the past few years, but almost exclusively in the male population. The possible effects of the menstrual cycle on human circadian rhythms have remained equivocal, particularly in the context of muscle strength. The purpose of the study was to analyze the isolated and combined effects of circamensal variation and diurnal changes on muscle strength. Eight eumenorrheic females (age 30 +/- 5 yrs, height 1.63 +/- 0.06m and body mass 66.26 +/- 4.6kg: mean +/- SD) participated in this investigation. Isokinetic peak torque of knee extensors and flexors of the dominant leg were measured at 1.05, 3.14rad.s(-1) (through 90 degrees ROM) at two times-of-day (06:00, 18:00 h) and five time points of the menstrual cycle (menses, mid-follicular, ovulation, mid-luteal, late luteal). In addition, maximum voluntary isometric contraction of knee extensors and flexors and electrically stimulated isometric contraction of the knee extensors were measured at 60 degrees of knee flexion. Rectal temperature was measured during 30min before the tests. There was a significant time-of-day effect on peak torque values for isometric contraction of knee extensors under electrical stimulation (P< 0.05). At 18:00 h, muscle force was 2.6% greater than at 06:00 h. The time-of-day effect was not significant when the tests were performed voluntarily without stimulation: effect size calculations indicated small differences between morning and evening for maximal voluntary isometric contraction and peak torque (at 1.05rad.s(-1) for the knee extensors. A circamensal variation was observed for peak torque of knee flexors at 1.05rad.s(-1), extensors at 3.14rad.s(-1), and also isometric contraction of knee flexors, values being greatest at the ovulation phase. Interaction effects between time-of-day and menstrual cycle phase were not observed in any of the indices of muscle strength studied. The phase of the menstrual cycle seemed to have a greater effect than did the time-of-day on female muscle strength in this group of subjects. The present results suggest that peripheral rather than central mechanisms (e.g., motivation) are implicated in the diurnal variation of maximal isometric strength of women.  相似文献   

9.
Following active muscle lengthening, steady-state isometric force is elevated compared with an isometric contraction without prior lengthening for the same muscle length and activation level. This property of muscle contraction is known as residual force enhancement (RFE). Here, we aimed to determine whether neural factors may mask some of the mechanical benefits of RFE on plantar flexion torque production. Inherent to lengthening contractions is an increase in cortical and spinal-mediated inhibition, while knee flexion places the medial gastrocnemius at a neuromechanical disadvantage. Neuromuscular properties of the plantar flexors were investigated with a Humac Norm dynamometer in 10 males (∼27 years) with a flexed (90°) and extended (180°) knee and with or without calcaneal tendon vibration (frequency range: 80–110 Hz). There was no effect for vibration (p > 0.05), but there was an effect for knee angle (p < 0.05) such that there was a 2 fold increase in RFE with the knee flexed compared with extended. During submaximal torque matching, following active lengthening there was an activation reduction (electromyography; EMG) of 7.2 and 4.7% with the knee flexed and extended, respectively for soleus as compared with the reference isometric contraction, but no difference for the medial gastrocnemius. Despite attempting to excite Ia input onto the plantar flexor motor neuron pool, vibration had no influence on RFE. Surprisingly, RFE was elevated more for the knee flexed than extended, which was possibly owing to the activation differences across the disparate muscles of the triceps surae during the plantar flexion task.  相似文献   

10.
Contraction work (CW) was recorded for each of 200 repetitive isokinetic plantar flexions (1.05 rad.s-1) and knee extensions (1.57 rad.s-1) in 14 elite male orienteers. Simultaneous recordings of integrated electromyograms (iEMG) were obtained from the 3 parts of triceps surae and from 3 superficial portions of quadriceps femoris. CW in both muscle groups decreased significantly during the first 30 contractions (the fatigue phase), followed by a steady state level. The relative steady state level was higher for the plantar flexors (70 +/- 17%) than for the knee extensors (56 +/- 12%). For quadriceps a significant increase in iEMG occurred during the first 10 contractions followed by a decrease, whereas the iEMG of the plantar flexors showed a gradual decrease to the steady state level, which was similar for the two muscle groups (71-72%). The chosen expression of output/input balance (CW/iEMG) was constant throughout the plantarflexion test but decreased during the initial 20 knee extensions down to 82%. Thus, the fatigue phase of the knee extensions appeared to be divided into two; the first part had decreases in both CW and CW/iEMG and the second part with a decrease in CW alone. In contrast the plantar flexors only showed the characteristics of the second part.  相似文献   

11.
The present study was to investigate the effects of 20 days of bed rest on morphological characteristics of lower limb skeletal muscles. Ten sedentary volunteers (5 males and 5 females) were participating in this study. Magnetic resonance imaging techniques were used to measure the physiological cross-sectional areas (PCSAs) of the major muscles and muscle groups of the lower limb. Consecutive images were taken from the right thigh and leg of subjects, and muscle volumes (MV), muscle length, and fiber length were calculated. PCSA of each muscle was determined as MV times the cosine of the angle of fiber pennation divided by fiber length. PCSA of knee extensor and flexor muscles were significant reduced during and after bed rest. MV and PCSA of individual muscles in the knee extensors decreased by -5.1 % to -8.0%. In knee flexors, MV and PCSA in biceps femoris (long head), semitendinosus, semimembranosus, and sartorius decreased during and after bed rest. MV and PCSA in medial and lateralis [correction of andateralis] gastrocnemius, and soleus were remarkably reduced by -9.4 to -10.3% after bed rest. The results suggest that there is a great variability of muscle atrophy in the lower limb muscle groups or individual muscle after bed rest and that the plantar flexors primarily affected.  相似文献   

12.
The reflex activity of the flexors and extensors of the knee joint in response to a tap with a percussion hammer at a patellar tendon has been studied in healthy subjects. The studies were performed while the subjects were in a relaxed state at rest or during reinforcement using Jendrassik’s method. The contribution of muscle receptors to the reflex is discussed. It has been demonstrated that the initial burst of activity in the flexors is a “hum” of potentials generated by the quadriceps muscle of the thigh.  相似文献   

13.
AimLoss of muscle strength and balance are main characteristics of physical frailty in old age. Postural sway is associated with muscle contractile capacity and to the ability of rapidly correcting ankle joint changes. Thus, resistance training would be expected to improve not only strength but also postural balance.MethodsIn this study, age-matched older individuals (69.9±1.3 years) were randomly assigned to flywheel (n=12), or weight-lifting (n=12) groups, training the knee extensors thrice weekly for 12 weeks. The hypotheses were that owing to a larger eccentric loading of the knee extensors, flywheel training would result in (a) greater gains in quadriceps strength; (b) greater improvements in balance performance compared with weight-lifting training. Isokinetic dynamometry, B-mode ultrasonography, electromyography, percutaneous muscle stimulation and magnetic resonance imaging were employed to acquire the parameters of interest.ResultsFollowing training, knee extensors peak isokinetic power increased by 28% (P<0.01) in the flywheel group with no change in the weight-lifting group. Adaptations of the gastrocnemius muscle also occurred in both groups. The gastrocnemius characteristic with the highest response to training was tendon stiffness, with increases of 54% and 136% in the weight-lifting and flywheel groups, respectively (P<0.01). The larger increase in tendon stiffness in the flywheel group was associated with an improvement in postural balance (P<0.01).ConclusionQuadriceps flywheel loading not only produces a greater increase in power than weight training but its physiological benefits also transfer/overspill to the plantarflexor muscle–tendon unit resulting in a significantly improved balance. These findings support our initial hypotheses.  相似文献   

14.
The present study aimed to investigate the effects of repetitive drop jumps (DJ) and isometric leg presses (LP) on the tendon properties in knee extensors. Before and after each endurance test, the elongation (L) of the tendon and aponeurosis of the vastus lateralis muscle was measured directly by ultrasonography while the subjects performed ramp isometric knee extensions up to maximum voluntary isometric contraction. Eight men performed 100 repetitions of the DJ and 50 repetitions of the LP for 10 seconds with 10 seconds relaxation. In the DJ, there were no significant differences in L values at any force production levels before and after each endurance test. In LP, however, the L values above 500 N were significantly greater after the endurance test than before. These results suggest that the tendon properties in knee extensors change to become more compliant after the repeated longer-duration contractions, but not after repeated ballistic exercises.  相似文献   

15.
The maximum contractility of the muscles of the lower extremities was studied in patients with lumbar disc hernia in different age periods. Characteristics of the age-related changes in the muscle function of the patients were analyzed in comparison with the parameters of men with physiologically normal aging. It is shown that the maximum strength of muscles of the lower extremities (lower leg extensors and flexors and plantar flexors of the foot) in patients with lumbar disc hernia is 46–50% lower than in healthy subjects. This value is characterized by a negative correlation with age. The percentage of the age-specific decrease in the strength of three groups of muscles (lower leg extensors and flexors and plantar flexors of the foot) is 14% higher than in healthy men. The age-related decrease in the muscle strength of the lower extremities begins 30 years earlier.  相似文献   

16.
The goal of this study was to approbate a strength training protocol designed to improve motor skills at the maximum voluntary contraction (MVC) without hypertrophy of muscles. The main difference between this protocol and classical strength training was that the number of movements during a training session was increased to improve the motor skill, and the rest periods between the training movements were increased in order to minimize the damage of muscle fibers, which is one of the factors inducing muscle hypertrophy. Eleven subjects trained knee extensors of the right leg four times a week during four weeks. The evaluation of strength and speed characteristics with simultaneous recording the EMG activity was performed in both trained and untrained legs immediately before, during, and several times after the whole training period. Before and after the four-week training period, the size and contractile properties of the trained and contralateral knee extensors were evaluated by MRI and twitch interpolation technique. The maximal strength gains were about 17% in both trained and untrained legs; they did not differ significantly from each other. Noticeable increases in the EMG activity during the training period were observed. These changes were not accompanied by any significant changes in the muscle size, which demonstrates the “neural” nature of the training effects.  相似文献   

17.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

18.
A cinematographic recording of the movements of the lower limbs together with simultaneous emg tracings from nine lower limb muscles were obtained from two male track sprinters during three phases of a 100 m sprint run. The extensor muscles of the hip joint were found to be the primary movers by acceleration of the body's center of gravity (C.G.) during the ground phase of the running cycle. The extensors of the knee joint were also important in this, but to a minor extent, while the plantar flexors of the ankle joint showed the least contribution. The biarticular muscles functioned in a way different from the monoarticular muscles in the sense that they perform eccentric work during the flight and recovery phases and concentric work during the whole ground phase (support), whereas the monoarticular muscles are restricted first to eccentric work and then to concentric work during the ground phase. Furthermore, the biarticular muscles show variation (and rate of variation) in muscle length to a larger extent than the monoarticular muscles. Paradoxical muscle actions appear to take place around the knee joint, where the hamstring muscles, m. gastrocnemius, m. vastus laterialis and m. vastus medialis act as synergists by extending the knee joint during the last part of the ground phase.  相似文献   

19.
To investigate the effects of different training methods on nonthermal sweating during activation of the muscle metaboreflex, we compared sweating responses during postexercise muscle occlusion in endurance runners, sprinters, and untrained men under mild hyperthermia (ambient temperature, 35°C; relative humidity, 50%). Ten endurance runners, nine sprinters, and ten untrained men (maximal oxygen uptakes: 57.5 ± 1.5, 49.3 ± 1.5, and 36.6 ± 1.6 ml·kg(-1)·min(-1), respectively; P < 0.05) performed an isometric handgrip exercise at 40% maximal voluntary contraction for 2 min, and then a pressure of 280 mmHg was applied to the forearm to occlude blood circulation for 2 min. The Δ change in mean arterial blood pressure between the resting level and the occlusion was significantly higher in sprinters than in untrained men (32.2 ± 4.4 vs. 17.3 ± 2.6 mmHg, respectively; P < 0.05); however, no difference was observed between distance runners and untrained men. The Δ mean sweating rate (averaged value of the forehead, chest, forearm, and thigh) during the occlusion was significantly higher in distance runners than in sprinters and untrained men (0.38 ± 0.07, 0.19 ± 0.03, and 0.11 ± 0.04 mg·cm(-2)·min(-1), respectively; P < 0.05) and did not differ between sprinters and untrained men. Our results suggest that the specificity of training modalities influences the sweating response during activation of the muscle metaboreflex. In addition, these results imply that a greater activation of the muscle metaboreflex does not cause a greater sweating response in sprinters.  相似文献   

20.
The present study aimed to investigate the effects of low-load resistance training with vascular occlusion on the specific tension and tendon properties by comparing with those of high-load training. Nine participants completed 12 weeks (3 days/week) of a unilateral isotonic training program on knee extensors. One leg was trained using low load (20% of 1 RM) with vascular occlusion (LLO) and other leg using high load (80% of 1 RM) without vascular occlusion (HL). Before and after training, maximal isometric knee extension torque (MVC) and muscle volume were measured. Specific tension of vastus lateralis muscle (VL) was calculated from MVC, muscle volume, and muscle architecture measurements. Stiffness of tendon-aponeurosis complex in VL was measured using ultrasonography during isometric knee extension. Both protocols significantly increased MVC and muscle volume of quadriceps femoris muscle. Specific tension of VL increased significantly 5.5% for HL, but not for LLO. The LLO protocol did not alter the stiffness of tendon-aponeurosis complex in knee extensors, while the HL protocol increased it significantly. The present study demonstrated that the specific tension and tendon properties were found to remain following low-load resistance training with vascular occlusion, whereas they increased significantly after high-load training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号