共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid rafts are microdomains of the phospholipid bilayer, proposed to form semi-stable "islands" that act as a platform for several important cellular processes; major classes of raft-resident proteins include signalling proteins and glycosylphosphatidylinositol (GPI)-anchored proteins. Proteomic studies into lipid rafts have been mainly carried out in mammalian cell lines and single cell organisms. The nematode Caenorhabditis elegans, the model organism with a well-defined developmental profile, is ideally suited for the study of this subcellular locale in a complex developmental context. A study of the lipid raft proteome of C. elegans is presented here. A total of 44 proteins were identified from the lipid raft fraction using geLC-MS/MS, of which 40 have been determined to be likely raft proteins after analysis of predicted functions. Prediction of GPI-anchoring of the proteins found 21 to be potentially modified in this way, two of which were experimentally confirmed to be GPI-anchored. This work is the first reported study of the lipid raft proteome in C. elegans. The results show that raft proteins, including numerous GPI-anchored proteins, may have a variety of potentially important roles within the nematode, and will hopefully lead to C. elegans becoming a useful model for the study of lipid rafts. 相似文献
2.
3.
Quantitative proteome analysis using differential stable isotopic labeling and microbore LC-MALDI MS and MS/MS 总被引:2,自引:0,他引:2
We demonstrate an approach for global quantitative analysis of protein mixtures using differential stable isotopic labeling of the enzyme-digested peptides combined with microbore liquid chromatography (LC) matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). Microbore LC provides higher sample loading, compared to capillary LC, which facilitates the quantification of low abundance proteins in protein mixtures. In this work, microbore LC is combined with MALDI MS via a heated droplet interface. The compatibilities of two global peptide labeling methods (i.e., esterification to carboxylic groups and dimethylation to amine groups of peptides) with this LC-MALDI technique are evaluated. Using a quadrupole-time-of-flight mass spectrometer, MALDI spectra of the peptides in individual sample spots are obtained to determine the abundance ratio among pairs of differential isotopically labeled peptides. MS/MS spectra are subsequently obtained from the peptide pairs showing significant abundance differences to determine the sequences of selected peptides for protein identification. The peptide sequences determined from MS/MS database search are confirmed by using the overlaid fragment ion spectra generated from a pair of differentially labeled peptides. The effectiveness of this microbore LC-MALDI approach is demonstrated in the quantification and identification of peptides from a mixture of standard proteins as well as E. coli whole cell extract of known relative concentrations. It is shown that this approach provides a facile and economical means of comparing relative protein abundances from two proteome samples. 相似文献
4.
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation. 相似文献
5.
Xiaoying Ye Donald J. Johann Jr. Ramin M. Hakami Zhen Xiao Zhaojing Meng Robert G. Ulrich Haleem J. Issaq Timothy D. Veenstra Josip Blonder 《Journal of Proteomics》2009,73(1):112-122
Proteomic profiling of membrane proteins is of vital importance in the search for disease biomarkers and drug development. However, the slow pace in this field has resulted mainly from the difficulty to analyze membrane proteins by mass spectrometry (MS). The objective of this investigation was to explore and optimize solubilization of membrane proteins for shotgun membrane proteomics of the CD14 human monocytes by examining different systems that rely on: i) an organic solvent (methanol) ii) an acid-labile detergent 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), iii) a combination of both agents (methanol + PPS). Solubilization efficiency of different buffers was first compared using bacteriorhodopsin as a model membrane protein. Selected approaches were then applied on a membrane subproteome isolated from a highly enriched human monocyte population that was ~ 98% positive for CD14 expression as determined by FACS analysis. A methanol-based buffer yielded 194 proteins of which 93 (48%) were mapped as integral membrane proteins. The combination of methanol and acid-cleavable detergent gave similar results; 203 identified proteins of which 93 (46%) were mapped integral membrane proteins. However, employing PPS 216 proteins were identified of which 75 (35%) were mapped as integral membrane proteins. These results indicate that methanol alone or in combination with PPS yielded significantly higher membrane protein identification/enrichment than the PPS alone. 相似文献
6.
Background
The observed molecular weight of a protein on a 1D polyacrylamide gel can provide meaningful insight into its biological function. Differences between a protein's observed molecular weight and that predicted by its full length amino acid sequence can be the result of different types of post-translational events, such as alternative splicing (AS), endoproteolytic processing (EPP), and post-translational modifications (PTMs). The characterization of these events is one of the important goals of total proteome profiling (TPP). LC/MS/MS has emerged as one of the primary tools for TPP, but since this method identifies tryptic fragments of proteins, it has not generally been used for large-scale determination of the molecular weight of intact proteins in complex mixtures. 相似文献7.
We report an isotope labeling shotgun proteome analysis strategy to validate the spectrum-to-sequence assignments generated by using sequence-database searching for the construction of a more reliable MS/MS spectral library. This strategy is demonstrated in the analysis of the E. coli K12 proteome. In the workflow, E. coli cells were cultured in normal and (15)N-enriched media. The differentially labeled proteins from the cell extracts were subjected to trypsin digestion and two-dimensional liquid chromatography quadrupole time-of-flight tandem mass spectrometry (2D-LC QTOF MS/MS) analysis. The MS/MS spectra of the two samples were individually searched using Mascot against the E. coli proteome database to generate lists of peptide sequence matches. The two data sets were compared by overlaying the spectra of unlabeled and labeled matches of the same peptide sequence for validation. Two cutoff filters, one based on the number of common fragment ions and another one on the similarity of intensity patterns among the common ions, were developed and applied to the overlaid spectral pairs to reject the low quality or incorrectly assigned spectra. By examining 257,907 and 245,156 spectra acquired from the unlabeled and (15)N-labeled samples, respectively, an experimentally validated MS/MS spectral library of tryptic peptides was constructed for E. coli K12 that consisted of 9,302 unique spectra with unique sequence and charge state, representing 7,763 unique peptide sequences. This E. coli spectral library could be readily expanded, and the overall strategy should be applicable to other organisms. Even with this relatively small library, it was shown that more peptides could be identified with higher confidence using the spectral search method than by sequence-database searching. 相似文献
8.
The most commonly used method for protein identification with two-dimensional (2D) online liquid chromatography-mass spectrometry (LC/MS) involves the elution of digest peptides from a strong cation exchange column by an injected salt step gradient of increasing salt concentration followed by reversed phase separation. However, in this approach ion exchange chromatography does not perform to its fullest extent, primarily because the injected volume of salt solution is not optimized to the SCX column. To improve the performance of strong cation exchange chromatography, we developed a new method for 2D online nano-LC/MS that replaces the injected salt step gradient with an optimized semicontinuous pumped salt gradient. The viability of this method is demonstrated in the results of a comparative analysis of a complex tryptic digest of the yeast proteome using the injected salt solution method and the semicontinuous pump salt method. The semicontinuous pump salt method compares favorably with the commonly used injection method and also with an offline 2D-LC method. 相似文献
9.
J.W.C. Alffenaar A.M.A. WesselsK. van Hateren B. GreijdanusJ.G.W. Kosterink D.R.A. Uges 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(1):39-44
Fungal infections occur in immunocompromised patients. Azole antifungal agents are used for the prophylaxis and treatment of these infections. The interest in therapeutic drug monitoring azole agents has increased over the last few years. Inter- and intra-patient variability of pharmacokinetics, drug–drug interactions, serum concentration related toxicity and success of therapy has stressed the need of frequently therapeutic drug monitoring of the drugs, belonging to the group of azoles. Therefore a simple, rapid and flexible method of analysis is required. This method is based on the precipitation of proteins in human serum with LC/MS/MS detection. Validation was performed according to the guidelines for bioanalytical method validation of the food and drug administration agency. The four most used azole drugs can be detected in human serum within the clinical relevant serum levels with good accuracy and reproducibility at the limit of quantification. Intra- and inter-day validation demonstrated good accuracy and reproducibility. A rapid, sensitive and flexible LC/MS/MS method has been developed and validated to measure voriconazole (VRZ), fluconazole (FLZ), itraconazole (ITZ) and posaconazole (PSZ) in human serum. This new method is suitable for clinical pharmacokinetic studies and routine monitoring in daily practice. 相似文献
10.
The proteome of a HUPO human serum reference sample was analyzed using multidimensional separation techniques at both the protein and the peptide levels. To eliminate false-positive identifications from the search results, we employed a data filtering method using molecular weight (MW) correlations derived from denaturing 1-DE. First, the six most abundant serum proteins were removed from the sample using immunoaffinity chromatography. 1-DE was then used to fractionate the remaining serum proteins according to the MW. Gel bands were isolated and in-gel digested with trypsin, and the resulting peptides were analyzed by 2-D LC/ESI-MS/MS. A SEQUEST search using the MS/MS results identified 494 proteins. Of these, 202 were excluded formally using protein data filtering as they were single-assignment proteins and their theoretical and electrophoretically-derived MWs did not correlate at high confidence. To evaluate this method, the results were compared with those of 1-D LC/MALDI-TOF/TOF and HUPO Plasma Proteome Project analyses. Our data filtering approach proved valuable in analysis of complex, large-scale proteomes such as human serum. 相似文献
11.
Mano N Sato M Nozawa M Matsumoto Y Mori M Yamaguchi H Goto J Shimada M 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(13-14):987-992
Sirolimus is a widely used immunosuppressant that requires therapeutic drug monitoring (TDM). We optimized a preanalytical procedure that allows for the accurate quantiation of sirolimus in whole blood by LC/ESI-MS/MS with minimal matrix effects. Sirolimus is highly lipophilic, and solvents containing greater than 50% methanol were required to maintain sirolimus recovery. The final pretreatment procedure developed consists of a zinc sulfate protein precipitation, an extraction using octadecyl silyl-silica gel for eliminating water-soluble and hydrophilic compounds, and HybridSPE cartridge treatment to eliminate phospholipids. Using this procedure prior to LC/ESI-MS/MS led to the accurate and reproducible quantitation of sirolimus in human whole blood. The linear range of detection was 0.5-50 ng/mL, a range appropriate for TDM, and the method demonstrated good repeatability and intermediate precision within this quantitative range. In order to investigate the quantitative performance of this method, we compared it to two commercially available sirolimus immunoassays and our previously reported LC/ESI-MS/MS method. The immunoassays gave consistently greater values for the sirolimus concentration, and this may be related to antibody cross-reactivity with sirolimus metabolites and/or other matrix effects. Although our procedure is too long to support real-time TDM for outpatients, it can serve as reference method to assess the performance of other analytical methods that are currently available or may be developed in the future. 相似文献
12.
A careful disorderliness in the proteome: sites for interaction and targets for future therapies 总被引:2,自引:0,他引:2
The community of scientists interested in studying intrinsically unstructured (or disordered) proteins has emerged in recent years. What began as a controversial idea has become an established phenomenon. The new, greater focus on proteins that are in some way normally unstructured promises to provide a greater understanding of protein function, particularly with respect to protein-protein interactions. These regions also offer new possibilities into how interactions can be targeted by small molecules. 相似文献
13.
New highly sensitive, specific, reliable, reproducible and robust LC-MS/MS methods were developed to detect the anabolic steroids, nandrolone and stanozolol, in human hair for the first time. Hair samples from 180 participants (108 males, 72 females, 62% athletes) were screened using ELISA which revealed 16 athletes as positive for stanozolol and 3 for nandrolone. Positive samples were confirmed on LC-MS/MS in selective reaction monitoring (SRM) mode. The assays for stanozolol and nandrolone showed good linearity in the range 1-400 pg/mg and 5-400 pg/mg, respectively. The methods were validated for LLOD, interday precision, intraday precision, specificity, extraction recovery and accuracy. The assays were capable of detecting 0.5 pg stanozolol and 3.0 pg nandrolone per mg of hair, when approximately 20 mg of hair were processed. Analysis using LC-MS/MS confirmed 11 athletes’ positive for stanozolol (5.0 pg/mg to 86.3 pg/mg) and 1 for nandrolone (14.0 pg/mg) thus avoiding false results from ELISA screening. The results obtained demonstrate the application of these hair analysis methods to detect both steroids at low concentrations, hence reducing the amount of hair required significantly. The new methods complement urinalysis or blood testing and facilitate improved doping testing regimes. Hair analysis benefits from non-invasiveness, negligible risk of infection and facile sample storage and collection, whilst reducing risks of tampering and cross-contamination. Owing to the wide detection window, this approach may also offer an alternative approach for out-of-competition testing. 相似文献
14.
Ming DS Heathcote J 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(5-6):421-428
A rapid, sensitive, and specific ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) assay method for simultaneous determination of 13 benzodiazepine compounds in human urine was developed and validated. Aliquots of 0.5 mL of urine specimens were used for the analysis and the benzodiazepines were extracted by single step methanol (containing 0.2% formic acid) precipitation and then separated on a BEH C18 (50 mm × 2.1 mm, 1.7 μm) analytical column with the temperature maintained at 45°C. The mobile phases consisted of methanol and water (both containing 0.2% formic acid) and the flow rate was 0.4 mL/min. The TQ detector, equipped with an electrospray ionization ion source, was set up with a positive mode. The acquisitions were performed in multiple-reaction monitoring (MRM) and the limit of quantification was 20 ng/mL for all of the 13 compounds. The low limits of detections (LODs) of the benzodiazepines in this method were between 0.5 and 2 ng/mL. The chromatographic separation time was 4 min and calibration curves in human urine were generated over the range of 20-2000 ng/mL. The method validation parameters such as accuracy, precision, carryover, recovery, stability, and specificity for all of the 13 compounds were within the acceptable range. This method is suitable for the high throughput screening of benzodiazepines in clinical laboratories. 相似文献
15.
Liu T Qian WJ Chen WN Jacobs JM Moore RJ Anderson DJ Gritsenko MA Monroe ME Thrall BD Camp DG Smith RD 《Proteomics》2005,5(5):1263-1273
Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14 416 confidently identified peptides covering 4294 different proteins with an estimated 10% gene coverage of the human genome. By using the high efficiency CPE, an additional 1096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1390 proteins were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased with regard to protein M(r) , pI, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems. 相似文献
16.
Guo T Rudnick PA Wang W Lee CS Devoe DL Balgley BM 《Journal of proteome research》2006,5(6):1469-1478
Saliva is a readily available body fluid with great diagnostic potential. The foundation for saliva-based diagnostics, however, is the development of a complete catalog of secreted and "leaked" proteins detectable in saliva. By employing a capillary isoelectric focusing-based multidimensional separation platform coupled with electrospray ionization tandem mass spectrometry (MS), a total of 5338 distinct peptides were sequenced, leading to the identification of 1381 distinct proteins. A search of bacterial protein sequences also identified many peptides unique to several organisms and unique to the NCBI nonredundant database. To the best of our knowledge, this proteome study represents the largest catalog of proteins measured from a single saliva sample to date. Data analysis was performed on individual MS/MS spectra using the highly specific peptide identification algorithm, OMSSA. Searches were conducted against a decoyed SwissProt human database to control the false-positive rate at 1%. Furthermore, the well-curated SwissProt sequences represent perhaps the least redundant human protein sequence database (12,484 records versus the 50,009 records found in the International Protein Index human database), therefore minimizing multiple protein inferences from single peptides. This combined bioanalytical and bioinformatic approach has established a solid foundation for building up the human salivary proteome for the realization of the diagnostic potential of saliva. 相似文献
17.
Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery 总被引:1,自引:0,他引:1
Ngai HH Sit WH Jiang PP Xu RJ Wan JM Thongboonkerd V 《Journal of proteome research》2006,5(11):3038-3047
Membranous nephropathy is one of the most common causes of primary glomerular diseases worldwide. The present study adopted a gel-based proteomics approach to better understand the pathophysiology and define biomarker candidates of human membranous nephropathy using an animal model of passive Heymann nephritis (PHN). Clinical characteristics of Sprague-Dawley rats injected with rabbit anti-Fx1A antiserum mimicked those of human membranous nephropathy. Serial urine samples were collected at Days 0, 10, 20, 30, 40, and 50 after the injection with anti-Fx1A (number of rats = 6; total number of gels = 36). Urinary proteome profiles were examined using 2D-PAGE and SYPRO Ruby staining. Quantitative intensity analysis and ANOVA with Tukey post-hoc multiple comparisons revealed 37 differentially expressed proteins among 6 different time-points. These altered proteins were successfully identified by MALDI-TOF MS and classified into 6 categories: (i) proteins with decreased urinary excretion during PHN; (ii) proteins with increased urinary excretion during PHN; (iii) proteins with increased urinary excretion during PHN, but which finally returned to basal levels; (iv) proteins with increased urinary excretion during PHN, but which finally declined below basal levels; (v) proteins with undetectable levels in the urine during PHN; and (vi) proteins that were detectable in the urine only during PHN. Most of these altered proteins have functional significance in signaling pathways, glomerular trafficking, and controlling the glomerular permeability. The ones in categories (v) and (vi) may serve as biomarkers for detecting or monitoring membranous nephropathy. After normalization of the data with 24-h urine creatinine excretion, changes in 34 of initially 37 differentially expressed proteins remained statistically significant. These data underscore the significant impact of urinary proteomics in unraveling disease pathophysiology and biomarker discovery. 相似文献
18.
Jagerdeo E Montgomery MA Lebeau MA Sibum M 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2008,874(1-2):15-20
As laboratories are called upon to develop novel, fast, and sensitive methods, here we present a completely automated method for the analysis of cocaine and its metabolites (benzoylecgonine, ecgonine methyl ester, ecgonine and cocaethylene) from whole blood. This method utilizes an online solid-phase extraction (SPE) with high performance liquid chromatographic separation and tandem mass spectrometric detection. Pretreatment of samples involve only protein precipitation and ultracentrifugation. An efficient online solid-phase extraction (SPE) procedure was developed using Hysphere MM anion sorbent. A gradient chromatography method with a Gemini C6-Phenyl (50mmx3.00mm i.d., 5microm) column was used for the complete separation of all components. Analysis was by positive ion mode electrospray ionization tandem mass spectrometry, using multiple reaction monitoring (MRM) to enhance the selectivity and sensitivity of the method. For the analysis, two MRM transitions are monitored for each analyte and one transition is monitored for each internal standard. With a 30-microL sample injection, linearity was analyte dependent but generally fell between 8 and 500ng/mL. The limits of detection (LODs) for the method ranged from 3 to 16ng/mL and the limits of quantitation (LOQs) ranged from 8 to 47ng/mL. The bias and precision were determined using a simple analysis of variance (ANOVA: single factor). The results demonstrate bias as <7%, and %precision as <9% for all components at each QC level. 相似文献
19.
Tang CH Tsao PN Chen CY Shiao MS Wang WH Lin CY 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(22):2095-2106
A strategy consisting of a two-phase analytical procedure was used to obtain detailed molecular species composition for glycerophosphocholines (GPCs) profiling in biological tissue using ultra performance liquid chromatography coupled with a triple quadrupole mass spectrometer operating under electrospray mode. In phase one of the analytical procedure, the precursor ion scan was first conducted to obtain the preliminary lipid profile that revealed the composition of the molecular species possessing phosphocholine structure in the biological tissue. In phase two of the analytical procedure, each product ion spectrum obtained for the GPC components in the profile was sequentially acquired for the determination of the molecular structure. A simple guide with high differentiability was proposed for the diacyl-, alkyl-acyl- and alk-1-enyl-acyl-GPC, and related lyso-GPCs molecular structure decision. Total 93 GPCs molecular species were identified in the fetal mouse lung with the relative amounts from 14.39% to less than 0.01% (normalizing by the total GPCs signal). The optimized chromatographic conditions were also proposed in the analytical procedure based on the compromise between the separation efficiency and electrospray signal response. The plate number of the probing GPCs was obviously improved to above 30,000 and the detection limits of the probing GPCs were between 0.002 and 0.016 ng/μL. The practical usability of the analytical procedure has been validated using a study of chemically induced early lung maturation. The metabolic difference between chemically treated and untreated fetal mouse lung was clearly distinguished by the composition of GPCs with several characteristics of molecular structure. The overall results showed that this two-phase analytical procedure was reliable for comprehensive GPC profiling. 相似文献
20.
LC-MS/MS determination of helicid in human plasma and its application in pharmacokinetic studies 总被引:1,自引:0,他引:1
Xie H Jia Y Tan Z Zhang W Chen R Sun H Shen J Zhou H 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2011,879(30):3607-3611
Helicid is a traditional Chinese medicine used to treat headache and insomnia with definite effects. To facilitate pharmacokinetic studies of helicid in man, a sensitive and specific LC-MS/MS method for the quantitative detection of helicid in human plasma was developed and validated. The method involved the addition of bergeninum as the internal standard (IS), protein precipitation, HPLC separation, and quantification by MS/MS system using negative electrospray ionization in the multiple reaction monitoring mode (MRM). The precursor→product ion transitions were monitored at m/z 282.8→120.9 for helicid and m/z 326.9→192.2 for the IS, respectively. The lower limit of quantification (LLOQ) was 0.2 μg/L. The calibration curves for helicid was linear over a concentration range of 0.2-20 μg/L. The intra- and inter-batch analyses of QC samples at 0.4, 2, 20 μg/L indicated good precision (%R.S.D. between 2.69 and 5.47%) and accuracy (between 96.15 and 105.05%). The helicid was stable in human plasma stored at room temperature for at least 24h, 4°C for at least 24h, -20°C for at least 1 month, and for routine three freeze-thaw cycles. This accurate and specific assay provides a useful method for evaluating the pharmacokinetic profile of helicid in humans. 相似文献