首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies investigating the effects of shoe midsole hardness on running kinematics have often used male subjects from within a narrow age range. It is unknown whether shoe midsole hardness has the same kinematic effect on male and female runners as well as runners from different age categories. As sex and age have an effect on running kinematics, it is important to understand if shoe midsole hardness affects the kinematics of these groups in a similar fashion. However, current literature on the effects of sex and age on running kinematics are also limited to a narrow age range distribution in their study population. Therefore, this study tested the influence of three different midsole hardness conditions, sex and age on the lower extremity kinematics during heel-toe running. A comprehensive analysis approach was used to analyze the lower-extremity kinematic gait variables for 93 runners (male and female) aged 16-75 years. Participants ran at 3.33±0.15 m/s on a 30 m-long runway with soft, medium and hard midsoles. A principal component analysis combined with a support vector machine showed that running kinematics based on shoe midsole hardness, sex, and age were separable and classifiable. Shoe midsole hardness demonstrated a subject-independent effect on the kinematics of running. Additionally, it was found that age differences affected the more dominant movement components of running compared to differences due to the sex of a runner.  相似文献   

2.
Runners rarely run to the point of maximum fatigue or exhaustion. However, no studies have investigated how the level of exertion associated with a typical running session influences running mechanics. The purpose of this study was to investigate the effects that running in an exerted state had on the kinematics and joint timing within the lower extremity of uninjured, recreational runners. Twenty runners performed a prolonged treadmill run at a self-selected pace that best represented each runner’s typical training run. The run ended based on heart rate or perceived exertion levels that represented a typical training run. Kinematics and joint timing between the foot, knee, and hip were analyzed at the beginning and end of the run. Increases were primarily observed at the end of the run for the peak angles, excursions, and peak velocities of eversion, tibial internal rotation, and knee internal rotation. No differences were observed for knee flexion, hip internal rotation, or any joint timing relationship. Based on these results, runners demonstrated subtle changes in kinematics in the exerted state, most notably for eversion. However, runners were able to maintain joint timing throughout the leg, which may have been a function of the knee. Thus, uninjured runners normally experience small alterations in kinematics when running with typical levels of exertion. It remains unknown how higher levels of exertion influence kinematics with joint timing and the association with running injuries, or how populations with running injuries respond to typical levels of exertion.  相似文献   

3.
It is a common belief that bicycle seat pressure compresses neurovascular tissues in the perineum and may lead to perineal and penile pathologies in male cyclists. The purpose of this study was to examine the effect bicycle seat pressure has on compression of the perineal cavernous spaces, which house the penile neurovascular tissues. A second purpose was to identify where peak cavernous compression occurs in relation to a bicycle seat. Five males were assessed for compression of the corpus spongiosum and corpora cavernosa with and without bicycle seat pressure using MRI. Seat pressure was applied using a custom loading device designed to replicate seat pressure recorded during stationary bicycling. The distance between a horizontal midline of the seat and the point of peak cavernous space compression was made on sagittal plane images. Diameter measurements of the cavernous spaces at the point of peak compression were made on coronal plane images. Results revealed that peak cavernous space compression occurred below the pubic symphysis, 40.7(+/-11.4) mm anterior to the midline of the seat. Corpus spongiosum values in the unloaded condition were 148% greater than the loaded condition (p=0.008). Similarly, the left and right corpora cavernosa values for the unloaded condition were 252% and 232% greater, respectively, than the loaded condition (p=0.02-0.03). Cavernous spaces that house penile arteries and nerves were compressed maximally below the pubic symphysis. Because this location of peak compression was not different between subjects, it may be a universal impingement zone that limits blood flow and neural activity to and from the penis. This information can be used to optimize seat design and thus reduce perineal injuries.  相似文献   

4.
The effects of hip muscle strength and activation on anterior cruciate ligament injury biomechanics, particularly knee valgus loading, have been reported in isolation and with equivocal results. However, the combination of these factors influences joint biomechanics. This investigation evaluated the influence of hip strength on gluteal activation and knee valgus motion. Maximal isometric hip abduction (ABD) and external rotation (ER) contractions were used to define High and Low strength groups. Knee kinematics and gluteus maximus (GMax) and medius (GMed) EMG amplitudes obtained during landing were compared between High and Low strength groups after controlling for the potential confounding influence of sex. Knee valgus motion did not differ between the High and Low hip ABD and ER strength groups. However, the Low ABD and ER strength groups displayed greater GMed and GMax EMG amplitudes, respectively, compared to the High strength groups. These findings suggest that weaker individuals compensate for a lack of force production via heightened neural drive. As such, hip muscle strength influences knee valgus motion indirectly by determining neural drive requirements.  相似文献   

5.
The purpose of this study was to assess kinematic lower extremity motion patterns (hip flexion, knee flexion, knee valgus, and ankle dorsiflexion) during various foot-landing techniques (self-preferred, forefoot, and rear foot) between genders. 3-D kinematics were collected on 50 (25 male and 25 female) college-age recreational athletes selected from a sample of convenience. Separate repeated-measures ANOVAs were used to analyze each variable at three time instants (initial contact, peak vertical ground reaction force, and maximum knee flexion angle). There were no significant differences found between genders at the three instants for each variable. At initial contact, the forefoot technique (35.79 degrees +/- 11.78 degrees ) resulted in significantly (p = .001) less hip flexion than did the self-preferred (41.25 degrees +/- 12.89 degrees ) and rear foot (43.15 degrees +/- 11.77 degrees ) techniques. At peak vertical ground reaction force, the rear foot technique (26.77 degrees +/- 9.49 degrees ) presented significantly lower (p = .001) knee flexion angles as compared with forefoot (58.77 degrees +/- 20.00 degrees ) and self-preferred (54.21 degrees +/- 23.78 degrees ) techniques. A significant difference for knee valgus angles (p = .001) was also found between landing techniques at peak vertical ground reaction force. The self-preferred (4.12 degrees +/- 7.51 degrees ) and forefoot (4.97 degrees +/- 7.90 degrees ) techniques presented greater knee varus angles as compared with the rear foot technique (0.08 degrees +/- 6.52 degrees ). The rear foot technique created more ankle dorsiflexion and less knee flexion than did the other techniques. The lack of gender differences can mean that lower extremity injuries (e.g., ACL tears) may not be related solely to gender but may instead be associated with the landing technique used and, consequently, the way each individual absorbs jump-landing energy.  相似文献   

6.
Bicycle seat pressure is often examined by researchers exploring solutions for reducing seat injuries as it is thought a critical determinant; however, a reliable and valid methodology for this undertaking has not been reported. The current study was designed to address this shortcoming and to establish baseline interface pressure measurements for females and males. Participants completed two separate identical bicycle ergometer trials at 118 W in the tops and drops and at 300+/-82.4 W in top handlebar positions. Seat pressures were quantified from a pressure-sensing mat and the validity of the pressure system was examined through the relationship between known seat weights and the sum of seat pressures. Within trial intraclass correlation coefficients (ICCs) ranged between 0.90 and 0.99 and the between trial ICC values ranged between 0.02 and 0.96. The relationship (Pearson correlation coefficient) between seat weight and the sum of pressures was 0.97. Significant peak pressures were 39% greater in the 118 W top than 300 W top handlebar condition and 29% greater than the 118 W drop handlebar condition (p < 0.05). The gender comparison revealed that significant male peak pressure values were greater (24%) and that female values were less influenced by the hand position factor. Select within trial pressure measurements were found to be reliable during pedaling and valid statically. Additionally, the results indicated that workrate and hand position were factors influencing seat pressure and that males and females responded differently to adjustments of these factors.  相似文献   

7.
The endurance running (ER) hypothesis suggests that distance running played an important role in the evolution of the genus Homo. Most researchers have focused on ER performance in modern humans, or on reconstructing ER performance in Homo erectus, however, few studies have examined ER capabilities in other members of the genus Homo. Here, we examine skeletal correlates of ER performance in modern humans in order to evaluate the energetics of running in Neandertals and early Homo sapiens. Recent research suggests that running economy (the energy cost of running at a given speed) is strongly related to the length of the Achilles tendon moment arm. Shorter moment arms allow for greater storage and release of elastic strain energy, reducing energy costs. Here, we show that a skeletal correlate of Achilles tendon moment arm length, the length of the calcaneal tuber, does not correlate with walking economy, but correlates significantly with running economy and explains a high proportion of the variance (80%) in cost between individuals. Neandertals had relatively longer calcaneal tubers than modern humans, which would have increased their energy costs of running. Calcaneal tuber lengths in early H. sapiens do not significantly differ from those of extant modern humans, suggesting Neandertal ER economy was reduced relative to contemporaneous anatomically modern humans. Endurance running is generally thought to be beneficial for gaining access to meat in hot environments, where hominins could have used pursuit hunting to run prey taxa into hyperthermia. We hypothesize that ER performance may have been reduced in Neandertals because they lived in cold climates.  相似文献   

8.
We investigated the effect of gradual-elastic compression stockings (GCSs) on running economy (RE), kinematics, and performance in endurance runners. Sixteen endurance trained athletes (age: 34.73 ± 6.27 years; VO2max: 62.83 ± 9.03 ml·kg(-1)·min(-1); 38 minutes in 10 km; 1 hour 24 minutes in half marathon) performed in random order 4 bouts of 6 minutes at a recent half-marathon pace on a treadmill to evaluate RE with or without GCSs. Subsequently, 12 athletes were divided into 2 equal groups matched by their VO2max, and they performed a time limit test (T(lim)) on a treadmill at 105% of a recent 10-km pace with or without GCSs for evaluation of physiological responses and running kinematics. There were no significant differences in the RE test in all of the variables analyzed for the conditions, but a moderate reproducibility for some physiological responses was detected in the condition with GCSs. In the T(lim), the group that wore GCSs reached a lower % of maximum heart rate (HRmax) compared with the control group (96.00 ± 2.94 vs. 99.83 ± 0.40) (p = 0.01). Kinematics did not differ between conditions during the T(lim) (p > 0.05). There were improvement trends for time to fatigue (337 vs. 387 seconds; d = 0.32) and a lower VO2peak (≈53 vs. 62 ml·kg(-1)·min(-1); d = 1.19) that were detected with GCSs during the T(lim). These results indicate that GCSs reduce the % of HRmax reached during a test at competition pace. The lower reproducibility of the condition with GCSs perhaps suggests that athletes may possibly need an accommodation period for systematically experiencing the benefits of this garment, but this hypothesis should be further investigated.  相似文献   

9.
Lack of the necessary magnitude of energy dissipation by lower extremity joint muscles may be implicated in elevated impact stresses present during landing from greater heights. These increased stresses are experienced by supporting tissues like cartilage, ligaments and bones, thus aggravating injury risk. This study sought to investigate frontal plane kinematics, kinetics and energetics of lower extremity joints during landing from different heights. Eighteen male recreational athletes were instructed to perform drop-landing tasks from 0.3- to 0.6-m heights. Force plates and motion-capture system were used to capture ground reaction force and kinematics data, respectively. Joint moment was calculated using inverse dynamics. Joint power was computed as a product of joint moment and angular velocity. Work was defined as joint power integrated over time. Hip and knee joints delivered significantly greater joint power and eccentric work (p<0.05) than the ankle joint at both landing heights. Substantial increase (p<0.05) in eccentric work was noted at the hip joint in response to increasing landing height. Knee and hip joints acted as key contributors to total energy dissipation in the frontal plane with increase in peak ground reaction force (GRF). The hip joint was the top contributor to energy absorption, which indicated a hip-dominant strategy in the frontal plane in response to peak GRF during landing. Future studies should investigate joint motions that can maximize energy dissipation or reduce the need for energy dissipation in the frontal plane at the various joints, and to evaluate their effects on the attenuation of lower extremity injury risk during landing.  相似文献   

10.
Skin-mounted marker based motion capture systems are widely used in measuring the movement of human joints. Kinematic measurements associated with skin-mounted markers are subject to soft tissue artifacts (STA), since the markers follow skin movement, thus generating errors when used to represent motions of underlying bone segments. We present a novel ultrasound tracking system that is capable of directly measuring tibial and femoral bone surfaces during dynamic motions, and subsequently measuring six-degree-of-freedom (6-DOF) tibiofemoral kinematics. The aim of this study is to quantitatively compare the accuracy of tibiofemoral kinematics estimated by the ultrasound tracking system and by a conventional skin-mounted marker based motion capture system in a cadaveric experimental scenario. Two typical tibiofemoral joint models (spherical and hinge models) were used to derive relevant kinematic outcomes. Intra-cortical bone pins equipped with optical markers were inserted in the tibial and femoral bones to serve as a reference to provide ground truth kinematics. The ultrasound tracking system resulted in lower kinematic errors than the skin-mounted markers (the ultrasound tracking system: maximum root-mean-square (RMS) error 3.44° for rotations and 4.88 mm for translations, skin-mounted markers with the spherical joint model: 6.32° and 6.26 mm, the hinge model: 6.38° and 6.52 mm). Our proposed ultrasound tracking system has the potential of measuring direct bone kinematics, thereby mitigating the influence and propagation of STA. Consequently, this technique could be considered as an alternative method for measuring 6-DOF tibiofemoral kinematics, which may be adopted in gait analysis and clinical practice.  相似文献   

11.
This study examined lower extremity joint moments during walk and turn with different turn angles and pivot feet. Seven young adults (age 21+/-1.3 yrs) were asked to walk at a self-selected speed (1.35+/-0.15 m/s) and to turn to the right using right (spin turn) and left (step turn) pivot feet at turn angles of 0 degrees (walking straight), 45 degrees, and 90 degrees. Video and forceplate systems were employed for kinematic and kinetic data collection. Inverse dynamics approach was used to compute joint moments using segmental kinematics, ground reaction forces, and moments. The participants decreased their forward speed by increasing the ankle plantar flexion moment as the turn angle increased. The peak ankle plantar flexion moment during the braking phase increased with increasing turn angle for both spin and step turns. Ankle invertor moments were observed only in spin turns, suggesting that more ankle muscles are involved in spin turns than in step turns. The turn angle had a significant effect on the transverse plane moment profiles at the different lower extremity joints. The results suggest that the loading patterns of different anatomical structures in the lower extremity are affected by both turn angle and pivot foot during walk and turn actions.  相似文献   

12.
Potential sex differences in patterns of movement of recreational and competitive athletes were investigated in a systematic review of lower limb kinematics, muscle activation and stiffness during landing and hopping tasks. Little support for sex-specific lower limb kinematic patterns was found in 17 studies retrieved on landing and hopping. Ten studies retrieved on muscle activation during landing provided no support for sex-specific patterns. Four articles retrieved on leg stiffness established that absolute stiffness was lower in females, but differences in stiffness normalized to body mass were less clear. The wider literature indicates that a combination of biological, environmental and sociocultural constraints may shape movement patterns differently in females and males. Sociocultural factors differentially affect accumulated motor experience, practice opportunities and focus of attention in females, leading to differences in motor skill that confound the comparison of female and male movements. The findings of the review support the hypothesis that such sex differences in athletic performance are likely to diminish or disappear with increasing skill. In everyday movement tasks, however, where level of skill is a less meaningful dimension than in sport, differences in movement patterns observed between females and males point instead to the influence of subtle societal expectations on movement patterns.  相似文献   

13.
Although both trunk mass and trunk position have the potential to affect lower extremity biomechanics during landing, these effects are not well understood. Our overall hypothesis stated that both trunk mass and trunk position affect lower extremity biomechanics in landing. Thus, our purpose was to determine the effects of an added trunk load and kinematic trunk adaptation groups on lower extremity joint kinematics, kinetics, and energetics during drop-landings. Twenty-one recreationally active subjects were instrumented for biomechanical analysis. Subjects performed two sets of eight double-limb landings with and without 10% body weight added to the trunk. On lower extremity dependent variables, 2(condition: no load, trunk load)x2(group: trunk extensors vs. trunk flexors) ANOVAs were performed. Condition by group interactions at the hip showed differing responses to the added trunk load between groups where the trunk extensor group decreased hip extensor efforts ( downward decrease 11-18%) while the trunk flexor group increased hip extensor efforts ( upward increase 14-19%). The trunk load increased biomechanical demands at the knee and ankle regardless of trunk adaptation group. However, the percent increases in angular impulses and energy absorption in the trunk extensor group were 14-28% while increases in the trunk flexor group were 4-9%. Given the 10% body weight added to the trunk, the 14-28% increases at the knee and ankle in the trunk extensor group were likely due to the reduced hip extensor efforts during landing. Overall these findings support our overall hypothesis that both trunk mass and trunk position affect lower extremity biomechanics during vertically oriented landing tasks.  相似文献   

14.
An automated image-matching technique is presented to assess alignment of the entire lower extremity for normal and implanted knees and the positioning of implants with respect to bone. Sawbone femur and tibia and femoral and tibial components of a total knee arthroplasty system were used. Three spherical markers were attached to each sawbone and each component to define the local coordinate system. Outlines of the three-dimensional (3D) bone models and component computer-aided design (CAD) models were projected onto extracted contours of the femur, tibia, and implants in frontal and oblique X-ray images. Three-dimensional position of each model was recovered by minimizing the difference between the projected outline and the contour. Median values of the absolute error in estimating relative positions were within 0.5 mm and 0.6° for the femur with respect to the tibia, 0.5 mm and 0.5° for the femoral component with respect to the tibial component, 0.6 mm and 0.6° for the femoral component with respect to the femur, and 0.5 mm and 0.4° for the tibial component with respect to the tibia, indicating significant improvements when compared to manually obtained results.  相似文献   

15.
Despite the wide use of surface electromyography (EMG) to study pedalling movement, there is a paucity of data concerning the muscular activity during uphill cycling, notably in standing posture. The aim of this study was to investigate the muscular activity of eight lower limb muscles and four upper limb muscles across various laboratory pedalling exercises which simulated uphill cycling conditions. Ten trained cyclists rode at 80% of their maximal aerobic power on an inclined motorised treadmill (4%, 7% and 10%) with using two pedalling postures (seated and standing). Two additional rides were made in standing at 4% slope to test the effect of the change of the hand grip position (from brake levers to the drops of the handlebar), and the influence of the lateral sways of the bicycle. For this last goal, the bicycle was fixed on a stationary ergometer to prevent the lean of the bicycle side-to-side. EMG was recorded from M. gluteus maximus (GM), M. vastus medialis (VM), M. rectus femoris (RF), M. biceps femoris (BF), M. semimembranosus (SM), M. gastrocnemius medialis (GAS), M. soleus (SOL), M. tibialis anterior (TA), M. biceps brachii (BB), M. triceps brachii (TB), M. rectus abdominis (RA) and M. erector spinae (ES). Unlike the slope, the change of pedalling posture in uphill cycling had a significant effect on the EMG activity, except for the three muscles crossing the ankle's joint (GAS, SOL and TA). Intensity and duration of GM, VM, RF, BF, BB, TA, RA and ES activity were greater in standing while SM activity showed a slight decrease. In standing, global activity of upper limb was higher when the hand grip position was changed from brake level to the drops, but lower when the lateral sways of the bicycle were constrained. These results seem to be related to (1) the increase of the peak pedal force, (2) the change of the hip and knee joint moments, (3) the need to stabilize pelvic in reference with removing the saddle support, and (4) the shift of the mass centre forward.  相似文献   

16.
The purpose of this study was to evaluate whether and how isometric multijoint leg extension strength can be used to assess athletes' muscular capability within the scope of strength diagnosis. External reaction forces (Fext) and kinematics were measured (n = 18) during maximal isometric contractions in a seated leg press at 8 distinct joint angle configurations ranging from 30 to 100° knee flexion. In addition, muscle activation of rectus femoris, vastus medialis, biceps femoris c.l., gastrocnemius medialis, and tibialis anterior was obtained using surface electromyography (EMG). Joint torques for hip, knee, and ankle joints were computed by inverse dynamics. The results showed that unilateral Fext decreased significantly from 3,369 ± 575 N at 30° knee flexion to 1,015 ± 152 N at 100° knee flexion. Despite maximum voluntary effort, excitation of all muscles as measured by EMG root mean square changed with knee flexion angles. Moreover, correlations showed that above-average Fext at low knee flexion is not necessarily associated with above-average Fext at great knee flexion and vice versa. Similarly, it is not possible to deduce high joint torques from high Fext just as above-average joint torques in 1 joint do not signify above-average torques in another joint. From these findings, it is concluded that an evaluation of muscular capability by means of Fext as measured for multijoint leg extension is strongly limited. As practical recommendation, we suggest analyzing multijoint leg extension strength at 3 distinct knee flexion angles or at discipline-specific joint angles. In addition, a careful evaluation of muscular capacity based on measured Fext can be done for knee flexion angles ≥ 80°. For further and detailed analysis of single muscle groups, the use of inverse dynamic modeling is recommended.  相似文献   

17.
In skin grafting for reconstruction of burns and contracture deformities of the dorsal hand, the hand is kept in a proper position to provide the greatest amount of skin and to avoid the secondary functional deformity. The safe position has been commonly used for immobilizing the hand, but this is to protect the hand function rather than to provide maximal surface for skin grafting. Split-thickness skin graft contracts up to 30 to 50 percent of the original size owing to secondary contraction. If insufficient skin is grafted, contracture deformity of the dorsal hand may occur. To graft the greatest amount of skin on the dorsal hand, the hand should be kept preoperatively in a position flexing all joints of the wrist, metacarpophalangeal joints, and interphalangeal joints and maximally stretching the dorsal hand (a fist position). We studied the surface length of the dorsal hand between the wrist, the metacarpophalangeal joint, and the eponychium in the anatomic, safe, and fist positions of the right hand in 60 adults. Difference of total length between the anatomic and safe positions was not statistically significant (p > 0.05). The total length in a fist position was significantly increased in comparison with the other two positions (p < 0.05). In a fist position compared with the safe position, the increase in length of the dorsal surface of the proximal hand was 11 to 20 percent except in the thumb, and the increase in length of the dorsal surface of the finger was 12 to 17 percent. The increase in total length of a fist position was about 9 mm (7 to 8 percent) in the thumb and 20 to 32 mm (14 to 18 percent) in the index to little fingers. It suggests that the safe position fails to provide an increased dorsal hand surface area for skin grafting compared with the anatomic position. The greatest amount of skin can be grafted in a fist position. Hand immobilization in a fist position for 7 to 9 days after skin grafting has not resulted in irrevocable joint stiffness in our experience. If injury of the deep structures is not present, the hand should be immobilized in a fist position before skin grafting on the dorsal hand.  相似文献   

18.
Three possible patterns of pacing (type 1, fast/slow; type 2, slow/fast; and type 3, steady rate) were compared over a 1400 m, 4 min run. The subsequent running time to exhaustion at 370 m . min-1 was significantly longer with a type 1 than with a type 2 protocol (P less than 0.05). The steady rate pattern gave results intermediate between type 1 and type 2 pacing. Data for oxygen debt and recovery heart rate confirmed the superiority of type 1 pacing. Possible explanations included (1) a reduction of inefficient anaerobic work, and (2) a greater mechanical efficiency associated with the better matching of required effort to a tapering physiological power. Runners should aim at a steady physiological rather than a steady physical load.  相似文献   

19.
ABSTRACT: Ferrer-Roca, V, Roig, A, Galilea, P, and García-López, J. Influence of saddle height on lower limb kinematics in well-trained cyclists: Static vs. dynamic evaluation in bike fitting. J Strength Cond Res 26(11): 3025-3029, 2012-In cycling, proper saddle height is important because it contributes to the mechanical work of the lower limb joints, thus altering pedaling efficiency. The appropriate method to select optimal saddle height is still unknown. This study was conducted to compare a static (anthropometric measurements) vs. a dynamic method (2D analysis) to adjust saddle height. Therefore, an examination of the relationship between saddle height, anthropometrics, pedaling angles, and hamstring flexibility was carried out. Saddle height outside of the recommended range (106-109% of inseam length) was observed in 56.5% of the subjects. Inappropriate knee flexion angles using the dynamic method were observed in 26% of subjects. The results of this study support the concept that adjusting saddle height to 106-109% of inseam length may not ensure an optimal knee flexion (30-40°). To solve these discrepancies, we applied a multiple linear regression to study the relationship between anthropometrics, pedaling angles, and saddle height. The results support the contention that saddle height, inseam length, and knee angle are highly related (R = 0.963, p < 0.001). We propose a novel equation that relates these factors to recommend an optimal saddle height (108.6-110.4% of inseam length).  相似文献   

20.
A great deal of information is available in the literature on the effects of nutrition on disease development in plants and crops. However, much of this information is contradictory and although it is widely recognised that nutrition can influence disease in crops, limited progress has been made in the manipulation of crop nutrition to enhance disease control. Achieving this aim requires a sound understanding of the effects of fertilisation on nutrient levels and availability in crop tissues, and in turn, how the nutrient status of such tissues influences pathogen infection, colonisation and sporulation. Some of these details are known for a number of crop plants under controlled conditions, but very little of this type of information is available for crops under field conditions. This review focuses on nitrogen, sulphur, phosphorus, potassium and silicon, examines the availability of these nutrients in plant tissues to support pathogen growth and development, and reviews the effects of the different nutrients on disease development. The review also examines the potential for manipulating crop nutrition to enhance disease control in conventional and organic cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号