首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glycerophosphocholine is formed via the deacylation of the phospholipid phosphatidylcholine. The protein encoded by Saccharomyces cerevisiae open reading frame YPL110c effects glycerophosphocholine metabolism in vivo, most likely by acting as a glycerophosphocholine phosphodiesterase. Deletion of YPL110c causes an accumulation of glycerophosphocholine in cells prelabeled with [14C]choline. Correspondingly, overexpression of YPL110c results in reduced intracellular glycerophosphocholine in cells prelabeled with [14C]choline. Glycerophospho[3H]choline supplied in the growth medium accumulates to a much greater extent in the intracellular fraction of a YPL110Delta strain than in a wild type strain. Furthermore, glycerophospho[3H]choline accumulation requires the transporter encoded by GIT1, a known glycerophosphoinositol transporter. Growth on glycerophosphocholine as the sole phosphate source requires YPL110c and the Git1p permease. In contrast to glycerophosphocholine, glycerophosphoinositol metabolism is unaffected by deletion of YPL110c. The open reading frame YPL110c has been termed GDE1.  相似文献   

3.
Phosphatidylinositol catabolism in Saccharomyces cerevisiae is known to result in the formation of extracellular glycerophosphoinositol (GroPIns). We now report that S. cerevisiae not only produces but also reutilizes extracellular GroPIns and that these processes are regulated in response to inositol availability. A wild-type strain uniformly prelabeled with [3H] inositol displayed dramatically higher extracellular GroPIns levels when cultured in medium containing inositol than when cultured in medium lacking inositol. This difference in extracellular accumulation of GroPIns in response to inositol availability was shown to be a result of both regulated production and regulated reutilization. In a strain in which a negative regulator of phospholipid and inositol biosynthesis had been deleted (an opi1 mutant), this pattern of extracellular GroPIns accumulation in response to inositol availability was altered. An inositol permease mutant (itr1 itr2), which is unable to transport free inositol, was able to incorporate label from exogenous glycerophospho [3H]inositol, indicating that the inositol label did not enter the cell solely via the transporters encoded by itr1 and itr2. Kinetic studies of a wild-type strain and an itr1 itr2 mutant strain revealed that at least two mechanisms exist for the utilization of exogenous GroPIns: an inositol transporter-dependent mechanism and an inositol transporter-independent mechanism. The inositol transporter-independent pathway of exogenous GroPIns utilization displayed saturation kinetics and was energy dependent. Labeling studies employing [14C]glycerophospho[3H] inositol indicated that, while GroPIns enters the cell intact, the inositol moiety but not the glycerol moiety is incorporated into lipids.  相似文献   

4.
In eukaryotes, neuropathy target esterase (Nte1p in yeast) deacylates phosphatidylcholine derived exclusively from the CDP-choline pathway to produce glycerophosphocholine (GroPCho) and release two fatty acids. The metabolic fate of GroPCho in eukaryotic cells is currently not known. Saccharomyces cerevisiae contains two open reading frames predicted to contain glycerophosphodiester phosphodiesterase domains, YPL110c and YPL206c. Pulse-chase experiments were conducted to monitor GroPCho metabolic fate under conditions known to alter CDP-choline pathway flux and consequently produce different rates of formation of GroPCho. From this analysis, it was revealed that GroPCho was metabolized to choline, with this choline serving as substrate for renewed synthesis of phosphatidylcholine. YPL110c played the major role in this metabolic pathway. To extend and confirm the metabolic studies, the ability of the ypl110cDelta and ypl206cDelta strains to utilize exogenous GroPCho or glycerophosphoinositol as the sole source of phosphate was analyzed. Consistent with our metabolic profiling, the ypl206cDelta strain grew on both substrates with a similar rate to wild type, whereas the ypl110cDelta strain grew very poorly on GroPCho and with moderately reduced growth on glycerophosphoinositol.  相似文献   

5.
Phospholipid deacylation results in the formation of glycerophosphodiesters and free fatty acids. In Saccharomyces cerevisiae, four gene products with phospholipase B (deacylating) activity have been characterized (PLB1, PLB2, PLB3, NTE1), and those activities account for most, if not all, of the glycerophosphodiester production observed to date. The glycerophosphodiesters themselves are hydrolyzed into glycerol-3-phosphate and the corresponding alcohol by glycerophosphodiester phosphodiesterases. Although only one glycerophosphodiester phosphodiesterase-encoding gene (GDE1) has been characterized in S. cerevisiae, others certainly exist. Both internal and external glycerophosphodiesters (primarily glycerophosphocholine and glycerophosphoinositol) are formed as a result of phospholipid turnover in S. cerevisiae. A permease encoded by the GIT1 gene imports extracellular glycerophosphodiesters across the plasma membrane, where their hydrolytic products can provide crucial nutrients such as inositol, choline, and phosphate to the cell. The importance of this metabolic pathway in various aspects of S. cerevisiae cell physiology is being explored.  相似文献   

6.
7.
8.
Eukaryotic cells control the levels of their major membrane lipid, phosphatidylcholine (PtdCho), by balancing synthesis with degradation via deacylation to glycerophosphocholine (GroPCho). Here we present evidence that in both yeast and mammalian cells this deacylation is catalyzed by neuropathy target esterase (NTE), a protein originally identified by its reaction with organophosphates, which cause nerve axon degeneration. YML059c, a Saccharomyces cerevisiae protein with sequence homology to NTE, had similar catalytic properties to the mammalian enzyme in assays of microsome preparations and, like NTE, was localized to the endoplasmic reticulum. Yeast lacking YML059c were viable under all conditions examined but, unlike the wild-type strain, did not convert PtdCho to GroPCho. Despite the absence of the deacylation pathway, the net rate of [(14)C]choline incorporation into PtdCho in YML059c-null yeast was not greater than that in the wild type; this was because, in the null strain diminished net uptake of extracellular choline and decreased formation of the rate-limiting intermediate, CDP-choline, resulted in a reduced rate of PtdCho synthesis. In [(14)C]choline labeling experiments with cultured mammalian cell lines, production of [(14)C]GroPCho was enhanced by overexpression of catalytically active NTE and was diminished by reduction of endogenous NTE activity mediated either by RNA interference or organophosphate treatment. We conclude that NTE and its homologues play a central role in membrane lipid homeostasis.  相似文献   

9.
We developed a HPLC method which separates the following nine inositol-containing compounds of biological interest: inositol, inositol 1-monophosphate, inositol 2- or 4-monophosphate, inositol 1,2-cyclic phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate, glycerophosphoinositol, glycerophosphoinositol 4-monophosphate, and glycerophosphoinositol 4,5-bisphosphate. The method shows good resolution and sufficient recovery (70-80%) for each compound. By applying this method to human platelets prelabeled with [3H]inositol and stimulated with thrombin, we found an early increase of inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate. Accumulation of glycerophosphoinositol, inositol 1-monophosphate, and an inositol monophosphate which cochromatographs with inositol 2- and inositol 4-monophosphate occurs later. The method is simple, and--after removal of salts from the incubation buffer--can be directly applied to the measurement of aqueous soluble [3H]inositol-labeled compounds in biological samples.  相似文献   

10.
Histamine stimulation of cultured human umbilical vein endothelial cells induced dose- and time-dependent increases in glycerophosphoinositol (GroPIns), inositol-1-phosphate (InsP), inositolbisphosphate (InsP2) and inositoltrisphosphate (InsP3) in addition to release of thromboxane A2 and prostacyclin. Increases in InsP2 and InsP3 were immediate while increases in GroPIns and InsP occurred only after 1 min. Thromboxane A2 and prostacyclin release paralleled GroPIns and InsP production. The data indicate that, in endothelial cells, histamine evokes early hydrolysis of polyphosphoinositides, and that subsequent mobilization of arachidonic acid for thromboxane and prostacyclin synthesis involves both deacylation and phosphodiesteratic cleavage of phosphatidylinositol.  相似文献   

11.
Saccharomyces cerevisiae produces extracellular glycerophosphoinositol through phospholipase-mediated turnover of phosphatidylinositol and transports glycerophosphoinositol into the cell upon nutrient limitation. A screening identified the RAS GTPase-activating proteins Ira1 and Ira2 as required for utilization of glycerophosphoinositol as the sole phosphate source, but the RAS/cyclic AMP pathway does not appear to be involved in the growth phenotype. Ira1 and Ira2 affect both the production and transport of glycerophosphoinositol.Membrane phospholipids are continually synthesized and degraded as cells grow and respond to environmental conditions. A major pathway of phosphatidylinositol (PI) turnover in Saccharomyces cerevisiae is its deacylation to produce extracellular glycerophosphoinositol (GroPIns) (3). Plb3, an enzyme with phospholipase B (PLB)/lysophospholipase activity, is thought to be primarily responsible for the production of extracellular GroPIns, with Plb1 playing a lesser role (11, 12, 13). GroPIns is transported into the cell by the Git1 permease (17). GIT1 expression is upregulated by phosphate limitation and inositol limitation. In fact, GroPIns can act as the cell''s sole source of both inositol (17) and phosphate (1).A screening for gene products involved in the process by which GroPIns enters the cellular metabolism identified Ira1 and Ira2, yeast homologs of the mammalian protein neurofibromin. Alterations in NF1, the gene encoding neurofibromin, are associated with the pathogenesis of neurofibromatosis type 1, an autosomal dominant genetic disease (4, 5, 25). Ira1 and Ira2 and neurofibromin function as RAS GTPase-activating proteins (RAS GAPs). S. cerevisiae Ras1 and Ras2 activate adenylate cyclase to modulate cyclic AMP (cAMP) levels. The binding of cAMP to the regulatory subunits of protein kinase A (Bcy1) results in dissociation and activation of the catalytic subunits (Tpk1 to Tpk3). Ira1 and Ira2 inactivate RAS and thereby downregulate the pathway (18, 19). Hydrolysis of cAMP by the phosphodiesterases encoded by PDE1 and PDE2 also downregulate the pathway (7, 20, 23). The RAS/cAMP pathway responds to nutrient signals to modulate fundamental cellular processes, including stress resistance, metabolism, and cell proliferation (7, 20, 21).  相似文献   

12.
The aim of this work was to test the putative involvement of members of the ABC superfamily of transporters on folic acid (FA) cellular homeostasis in the human placenta. [(3)H]FA uptake and efflux in BeWo cells were unaffected or hardly affected by multidrug resistance 1 (MDR1) inhibition (with verapamil), multidrug resistance protein (MRP) inhibition (with probenecid) or breast cancer resistance protein (BCRP) inhibition (with fumitremorgin C). However, [(3)H]FA uptake and efflux were inhibited by progesterone (200 microM). An inhibitory effect of progesterone upon [(3)H]FA uptake and efflux was also observed in human cytotrophoblasts. Moreover, verapamil and ss-estradiol also reduced [(3)H]FA efflux in these cells. Inhibition of [(3)H]FA uptake in BeWo cells by progesterone seemed to be very specific since other tested steroids (beta-estradiol, corticosterone, testosterone, aldosterone, estrone and pregnanediol) were devoid of effect. However, efflux was also inhibited by beta-estradiol and corticosterone and stimulated by estrone. Moreover, the effect of progesterone upon the uptake of [(3)H]FA by BeWo cells was concentration-dependent (IC(50 )= 65 [range 9-448] microM) and seems to involve competitive inhibition. Also, progesterone (1-400 microM) did not affect either [(3)H]FA uptake or efflux at an external acidic pH. Finally, inhibition of [(3)H]FA uptake by progesterone was unaffected by either 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), a known inhibitor of the reduced folate carrier (RFC), or an anti-RFC antibody. These results suggest that progesterone inhibits RFC. In conclusion, our results show that progesterone, a sterol produced by the placenta, inhibits both FA uptake and efflux in BeWo cells and primary cultured human trophoblasts.  相似文献   

13.
Glioma C62B cells, incubated for 18 h with either an unsaturated (arachidonate or oleate) or saturated (palmitate or stearate) radioactive fatty acid, incorporated label into most species of cellular glycerolipids. Treatment of prelabeled C62B cells with 1 mM acetylcholine (ACh) resulted in an accumulation of radioactive phosphatidate irrespective of which fatty acid was used as a label. However, only in cells prelabeled with unsaturated fatty acids were increases in radioactive fatty acids observed. When exogenous radioactive arachidonate was added to C62B cells in the presence of 1 mM ACh, there was a rapid, selective, and transiently enhanced incorporation of label (several times the control) into phosphatidylinositol (PI). The ACh-enhanced incorporation into PI was not preceded by enhanced incorporation of label into sn-1,2-diacylglycerol or phosphatidate but was followed by an increased labeling of polyphosphoinositides. Similarly, incorporation of oleate into PI was enhanced by ACh. In contrast, ACh did not enhance the incorporation of label into any glycerolipids when saturated fatty acids were used. C62B cells, incubated with [2-3H]inositol for 18 h selectively incorporated label into phosphoinositides. Stimulation of [2-3H]inositol-labeled cells with 1 mM ACh in the presence of 25 mM LiCl resulted in a rapid accumulation of radioactive inositol phosphates (mono-, bis-, and trisphosphates) and glycerophosphoinositol. The accumulation of inositol trisphosphates preceded that of inositol monophosphate and glycerophosphoinositol, while the accumulation of glycerophosphoinositol paralleled the time required for the ACh-stimulated esterification of arachidonate. These results suggest that ACh stimulates activation of a phospholipase C in C62B cells and release of 1,4,5-inositol trisphosphate. There is subsequent activation of phospholipase A2, which in turn liberates arachidonate from PI. The resulting lyso PI is either rapidly reesterified with unsaturated fatty acid to resynthesize PI, or further deacylated to yield glycerophosphoinositol.  相似文献   

14.
1. A phosphodiesterase that cleaves glycerophosphoinositol into glycerophosphate and inositol has been detected in rat tissues. 2. The enzyme requires Mg2+ (Mn2+) and has a pH optimum of 7.7. 3. The richest sources of the enzyme are kidney and intestinal mucosa. In pancreas subcellular fractions it occurs largely in the microsomal fraction. 4. The enzyme is inhibited by excess substrate and by the reaction product glycerophosphate. 5. Temperature-stability studies and other observations distinguish the enzyme from other membrane-bound phosphodiesterases active at an alkaline pH e.g. glycerophosphoinositol inositophosphohydrolase, glycerophosphocholine diesterase, inositol cyclic phosphate phosphodiesterase and phosphodiesterase I.  相似文献   

15.
The distribution of fucose-containing polysaccharides in apical 1-cm sections of corn (Zea mays cv. SX-17) root tips was analyzed. Fucose-containing polysaccharides were localized predominantly in the apical 1 mm of the root, i.e., in the apical initials and root cap. An analysis of the distribution of incorporated radioactive label from l-fucose[(3)H] gave similar results. After a 2-hr incubation with fucose[(3)H], label was found principally in two components, namely a water-soluble slime fraction and hemicellulose. The incorporation of fucose into the water-soluble, ethanol-insoluble fraction was primarily in the apical 1 mm of the root, whereas incorporation into a water-insoluble, potassium hydroxide-soluble fraction was in the region 2 to 5 mm behind the root cap. Addition of sucrose to the incubation medium during fucose[(3)H] incorporation reduces label uptake but increases the amount of label in the fucose-rich secreted polysaccharide. The utility of fucose as a marker for the secreted polysaccharide was confirmed by demonstrating that no appreciable metabolism of this sugar occurs.  相似文献   

16.
Glycosyl-inositolphospholipid (glycosyl-PtdIns) anchors of proteins in mammalian cells which have been analyzed so far are exclusively of the alkylacyl type. However, little is known about the putative precursor of glycosyl-PtdIns, the alkylacyl derivative of glycerophosphoinositol (GroPIns), in these cells since it is generally believed that cellular GroPIns consists of diacyl-type molecular species only. In this report, we describe the isolation and identification of alkylacyl GroPIns molecular species in both human and bovine erythrocytes, and compare it with the molecular species compositions of the glycosyl-PtdIns anchors of human and bovine erythrocyte acetylcholinesterase. Diradyl GroPIns was isolated from lipid extracts of ghost membranes and treated with phospholipase C. Diradylglycerols of the glycosyl-PtdIns anchors of affinity-purified human and bovine erythrocyte acetylcholinesterase were generated by sequential treatment with glycoprotein phospholipase D and acidic phosphatase and by PtdIns-specific phospholipase C, respectively. Diradylglycerols were subsequently converted into benzoate derivatives and separated into diacyl, alkylacyl, and alkenylacylglycerol subclasses. The molecular species compositions were quantitated and determined by combined HPLC/mass spectrometry. We found that human and bovine erythrocyte membrane diradyl GroPIns consist of 1.5-4.8% alkylacyl GroPIns. Molecular species analysis showed a heterogeneous species composition for both human and bovine erythrocyte alkylacyl GroPIns. Their compositions are distinctly different from those of human and bovine erythrocyte acetylcholinesterase glycosyl-PtdIns anchors. The number of alkylacyl GroPIns molecules/cell is roughly equal with the number of glycosyl-PtdIns-anchored proteins in human erythrocytes.  相似文献   

17.
Glycerophosphoinositol (GroPIns) is a major inositol phosphate in many cell types. In this study we have determined the optimal conditions (pH 8.0 and 0.5 mM MnCl2) for the metabolism of this molecule in an extract from human placenta, and we show that the major product is inositol (1)-phosphate (Ins(1)P). The enzyme activity that catalyzes this reaction is contained in the same protein designated previously as inositol-(1,2)-cyclic-phosphate 2-inositolphosphohydrolase (cyclic hydrolase), a phosphodiesterase that catalyzes the conversion of inositol-(1,2)-cyclic phosphate (cIns(1,2)P) to Ins(1)P. In addition, the enzyme also catalyzes the production of Ins(1)P from inositol (1)-methylphosphate. All of these substrates, (cIns(1,2)P, GroPIns, and inositol (1)-methylphosphate), contain a phosphodiester bond at the 1-position of the inositol ring. Additional phosphate groups on the 4- or 5-positions of the inositol ring prevent hydrolysis by cyclic hydrolase. The Km of the enzyme for GroPIns is 0.67 mM, and the Vm is 5 mumol/min/mg of protein. GroPIns competitively inhibits cIns(1,2)P hydrolysis with a Ki equal to its Km as a substrate. Hydrolysis of GroPIns and cIns(1,2)P is stimulated by MnCl2, phosphatidylserine, and [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA). However, whereas cIns(1,2)P hydrolysis is increased 5-8-fold by phosphatidylserine and EGTA only a 2-fold increase of GroPIns hydrolysis occurs under the same conditions. Hydrolysis of both GroPIns and cIns(1,2)P is inhibited by Ins(2)P; the ID50 values are 12 and 1 microM, respectively. There are significant quantities of GroPIns and Ins(2)P in 3T3 cells, indicating that these compounds that alter cIns(1,2)P hydrolase activity may modulate intracellular levels of cIns(1,2)P. Finally, we present evidence suggesting that the substrate specificity of this enzyme is altered during cell transformation.  相似文献   

18.
[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.  相似文献   

19.
2'-Phosphophloretin (2'-PP), a phosphorylated derivative of the plant chalcone, was synthesized. The effect of 2'-PP, on Na(+)-dependent phosphate uptake into intestinal brush-border membrane vesicles (BBMV) isolated from rabbit and rat duodenum and jejunum was examined. 2'-PP decreased Na(+)-dependent phosphate uptake into rabbit BBMV with an IC(50) of 55 nM and into rat BBMV with an IC(50) of 58 nM. 2'-PP did not affect Na(+)-dependent glucose, Na(+)-dependent sulfate, or Na(+)-dependent alanine uptake by rabbit intestinal BBMVs. 2'-PP inhibition of rabbit intestinal BBMV Na(+)-dependent phosphate uptake was sensitive to external phosphate concentration, suggesting that 2'-PP inhibition of Na(+)-dependent phosphate uptake was competitive with respect to phosphate. Binding of [(3)H]2'-PP to rabbit intestinal BBMV was examined. Binding of [(3)H]2'-PP was Na(+)-dependent with a K(0.5) for Na(+)(Na(+) concentration for 50% 2'-PP binding) of 30 mM. The apparent K(s) for Na(+)-dependent [(3)H]2'-PP binding to rabbit BBMVs was 58 nM in agreement with the IC(50) for 2'-PP inhibition of Na(+)-dependent phosphate uptake. These results indicate that 2'-PP bound to rabbit or rat intestinal BBMV Na(+)-phosphate cotransporter and inhibited Na(+)-dependent phosphate uptake. In rats treated with 2'-PP by daily gavage, the effect of 2'-PP on serum phosphate, serum glucose, and serum calcium was examined. In a concentration-dependent manner, 2'-PP reduced serum phosphate by 45% 1 wk after starting treatment. 2'-PP did not alter serum calcium or serum glucose. The apparent IC(50) for 2'-PP in vivo was 3 microM.  相似文献   

20.
Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C. albicans Rim13p, a homolog of the Rim13p/PalB calpain-like protease member of the RIM101/pacC pathway from Saccharomyces cerevisiae and Aspergillus nidulans, respectively. RIM13, like other members of the RIM101 pathway, is required for alkaline pH-induced filamentation and growth under extreme alkaline conditions. Further, our studies suggest that the RIM101 pathway promotes pH-independent responses, including resistance to high concentrations of lithium and to the drug hygromycin B. RIM13 encodes a calpain-like protease, and we found that Rim101p undergoes a Rim13p-dependent C-terminal proteolytic processing event at neutral-to-alkaline pHs, similar to that reported for S. cerevisiae Rim101p and A. nidulans PacC. However, we present evidence that suggests that C. albicans Rim101p undergoes a novel processing event at acidic pHs that has not been reported in either S. cerevisiae or A. nidulans. Thus, our results provide a framework to understand how the C. albicans Rim101p processing pathway promotes alkaline pH-independent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号