首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dental microwear was recorded in a Bronze-Iron Age (3570-3000 BP) sample of modern humans recovered from Tell es-Sa'idiyeh in the Jordan Valley. Microwear patterns were compared between mandibular molars, and between the upper and lower part of facet 9. The comparison revealed a greater frequency of pits and shorter scratches on the second and third molars, compared to the first. Pit frequency also increased on the lower part of the facet on the first molar, compared to the upper part. These results support previous calls for standardization when selecting a molar type for a diet-microwear study. Otherwise the microwear variations along the tooth row could mask any diet-microwear correlations. The results also suggest that there may be a need to choose a consistent location on a facet in order to enhance comparability among studies.  相似文献   

2.
Microwear patterns from Natufian hunter-gatherers (12,500-10,250 bp) and early Neolithic (10,250-7,500 bp) farmers from northern Israel are correlated with location on facet nine and related to an archaeologically suggested change in food preparation. Casts of permanent second mandibular molars are examined with a scanning electron microscope at a magnification of 500x. Digitized micrographs are taken from the upper and lower part of facet nine. Microwear patterns are recorded with an image-analysis computer program and compared within and between samples, using univariate and multivariate analyses. Comparisons within samples reveal a greater frequency of pits on the lower part of the facet among the farmers, compared to the upper part. Microwear does not vary over the facet among the hunter-gatherers. Comparisons between samples reveal larger dental pits (length and width) and wider scratches among the farmers at the bottom of the facet, compared to the hunter-gatherers. Microwear does not vary between samples at the top of the facet. The microwear patterns suggest that the Natufian to early Neolithic development led to a harder diet, and this is related to an archaeologically suggested change in food processing. The harder diet of the early farmers may have required higher bite forces that were exerted at the bottom of facet nine, in the basin of the tooth.  相似文献   

3.
Low-magnification microwear techniques have been used effectively to infer diets within many unrelated mammalian orders, but the extent to which patterns are comparable among such different groups, including long extinct mammal lineages, is unknown. Microwear patterns between ecologically equivalent placental and marsupial mammals are found to be statistically indistinguishable, indicating that microwear can be used to infer diet across the mammals. Microwear data were compared to body size and molar shearing crest length in order to develop a system to distinguish the diet of mammals. Insectivores and carnivores were difficult to distinguish from herbivores using microwear alone, but combining microwear data with body size estimates and tooth morphology provides robust dietary inferences. This approach is a powerful tool for dietary assessment of fossils from extinct lineages and from museum specimens of living species where field study would be difficult owing to the animal’s behavior, habitat, or conservation status.  相似文献   

4.
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.  相似文献   

5.
Previous animal experimental work evaluating the effects of dietary consistency on mastication was generally limited to studies of either mandibular structure or rates and types of tooth wear. Control groups fed hard diets (HD) consistently exhibited increased cortical remodeling and/or bone strength when compared to groups fed soft diets (SD). Results of tooth-wear studies showed faster rates of tooth wear in HD animals. This study evaluates the effects of dietary differences on both mandibular structural morphology and postcanine dental microwear in the same animals. We examined mandibles and dentitions from eight miniature swine, raised from 4 weeks to 9 months of age on HD and SD (n = 4, each group). Mandibular structural properties were calculated from peripheral quantitative computed tomography slices at the dp3-dp4 and dp4-M1 junctions. Dental microwear analysis was performed on mandibular lingual crushing facets of dp4 and M1, using photomicrographs of high-resolution casts taken at 500x magnification in a scanning electron microscope. Our results suggest that between the dp3-dp4 contact, HD animals have mandibles that are stronger and more rigid mediolaterally than SD animals. At the dp4-M1 contact, HD animals have mandibles that are stronger and more rigid mediolaterally, dorsoventrally, and in torsion than SD animals. Dental microwear results indicate that SD pigs have higher incidences of pitting and more overall microwear features on their premolars than do HD pigs, yet there are no significant differences in molar microwear morphology between the dietary groups. Near-significant correlations exist between pit size and dorsoventral bending strength, but only for HD pigs. These results suggest that dietary consistency significantly affects both mandibular structure and dental microwear, yet direct correlations between the two are complicated by a number of factors.  相似文献   

6.
Buccal-dental microwear depends on the abrasive content of chewed foodstuffs and can reveal long-term dietary trends in human populations. However, in vivo experimental analyses of buccal microwear formation processes are scarce. Here, we report the effects of an abrasive diet on microwear rates in two adult volunteers at intervals of 8 days over a period of 1 month and document long-term turnover over 5 consecutive years in the same subjects under an ad libitum Mediterranean diet. Buccal microwear was analyzed on mandibular first molars using high-resolution replicas and scanning electron microscopy. Microwear turnover was assessed by recording the scratches lost and gained at each time point. Our results indicate that scratch formation on enamel surfaces increased with a highly abrasive diet compared to both pre-test and post-test ad libitum dietary controls. In the long-term analysis, scratch turnover was higher than expected, but no significant long-term trends in microwear density or length were observed, because microwear formation was compensated by scratch disappearance. Our results confirm that buccal microwear patterns on mandibular molars show a dynamic formation process directly related to the chewing of abrasive particles along with ingested food. In addition, the observed long-term stability of buccal microwear patterns makes them a reliable indicator of overall dietary habits.  相似文献   

7.
Dental microwear analyses have raised new hopes and questions for functional morphologists. One hope is that analyses will allow insights into subtle dietary differences of extinct species. One major question is whether seasonal and/or habitat differences in dental microwear are reliably detectable. The extensive collections of Cebus nigrivittatus obtained by the Smithsonian Venezuelan Project allowed us to examine seasonal and habitat differences in dental microwear. Specimens were collected from three distinct ecological life zones that are distinguished by both the amount of rainfall and its seasonability. Environmental variation is generally correlated with variation in resource availability which, in C. nigrivittatus, affects diet. Published field studies indicate that these animals depend more on dry hard fruit and chitinous invertebrates during drier times and succulent fruits and caterpillars during wetter times of the year. As in previous microwear analyses, epoxy replicas were prepared from dental impressions, and the replicas were examined under a scanning electron microscope. Two micrographs were taken of facet 9 on M2 of each specimen. Mean values for the proportion of pits (vs. scratches), pit wdith, and scratch width were computed for each of 62 individuals and compared between ecological zones and collecting dates by using a multiple comparison test. Results indicate that, while seasonal differences in molar microwear in C. nigrivittatus are perhaps reliably detectable, 1) they are small in magnitude, 2) they are only detectable in certain ecological life zones, and 3) they are not of the order of magnitude that will obscure major interspecific differences in molar microwear such as those between C. apella and C. nigrivittatus.  相似文献   

8.
One problem with dental microwear analyses of museum material is that investigators can never be sure of the diets of the animals in question. An obvious solution to this problem is to work with live animals. Recent work with laboratory primates has shown that high resolution dental impressions can be obtained from live animals. The purpose of this study was to use similar methods to begin to document rates and patterns of dental microwear for primates in the wild. Thirty-three Alouatta palliata were captured during the wet season at Hacienda La Pacifica near Canas, Costa Rica. Dental impressions were taken and epoxy casts of the teeth were prepared using the methods of Teaford and Oyen (1989a). Scanning electron micrographs were taken of the left mandibular second molars at magnifications of 200x and 500x. Lower magnification images were used to calculate rates of wear, and higher magnification images were used to measure the size and shape of microwear features. Results indicate that, while basic patterns of dental microwear are similar in museum samples and samples of live, wild-trapped animals of the same species, ecological differences between collection locales may lead to significant intraspecific differences in dental microwear. More importantly, rates of microwear provide the first direct evidence of differences in molar use between monkeys and humans.  相似文献   

9.
Recent microwear analyses have demonstrated that wear patterns can be correlated with dietary differences. However, much of this work has been based on analyses of museum material where dates and locations of collection are not well known. In view of these difficulties, it would be desirable to compare microwear patterns for different genera collected from the same area at the same time. The opportunity to do this was provided by the collections of the Smithsonian Venezuelan Project (Handley, 1976), in which multiple primate genera were collected from the same humid tropical forest sites within the same month. The monkeys represent a wide range of dietary preferences, and include Saimiri, Cebus, Chiropotes, Ateles, Aotus, Pithecia, and Alouatta. As in previous microwear analyses, epoxy replicas were prepared from dental impressions, as described by Rose (1983) and Teaford and Oyen (1989). Two micrographs were taken of facet 9 on an upper second molar of each specimen. Computations and analyses were the same as described by Teaford and Robinson (1989). Results reaffirm previously documented differences in dental microwear between primates that feed on hard objects versus those that do not--with Pithecia and Alouatta at the extremes of a range of microwear patterns including more subtle differences between species with intermediate diets. The subtle microwear differences are by no means easy to document in museum samples. However, additional results suggest that 1) the width of microscopic scratches may be a poor indicator of dietary differences, 2) large and small pits may be formed differently, and 3) there are very few seasonal differences in dental microwear in the primates at these humid tropical forest sites.  相似文献   

10.
In order to further evaluate the process of microwear formation on human dental enamel, microwear was experimentally produced by a chewing simulation with an Academic Center for Dentistry Amsterdam (ACTA) device. For this simulation, several cereal species were processed according to historical milling techniques, the experimental results of which were compared with those obtained from cereals processed after modern techniques, and also with natural microwear on early medieval human molars. Comparison of simulated microwear pits with natural microwear pits showed that the simulation led to traces which matched those found on the historical teeth in terms of both size and shape. Experimentally produced microwear pits were especially characteristic for the cereal species used in the simulations, and both pit morphology and enamel loss were a function of cereal phytolith content. Despite the high variability of phytolith size and shape, certain types are characteristic for certain cereals, which in turn are capable of producing cereal-specific microwear. This experimental approach is likely to further define ancient human dietary behavior, including food processing.  相似文献   

11.
This study quantitatively examined molar microwear in nine species of extant small-bodied faunivorous primates and microchiropterans. Comparative analyses were performed within the food category faunivory, both between hard- and soft-object feeding faunivores and between primarily insectivorous and carnivorous taxa. Additionally, microwear in faunivores was compared to that reported in the literature for frugivorous and folivorous primates. The results indicated that although insectivores and carnivores could not be distinguished by microwear analyses, hard-object faunivores (i. e., those that primarily consume beetles or actively comminute bone) can be readily distinguished from soft-object faunivores (i. e., moth, caterpillar, or vertebrate flesh specialists). The hard-object faunivores consistently exhibited greater pit frequencies (in excess of 40%). Furthermore, comparisons of these microwear data on faunivorous mammals to previous work on frugivorous and folivorous primates (Teaford, 1988, pers. comm.; Teaford and Runestad, 1992, pers. comm.; Teaford and Walker: American Journal of Physical Anthropology 64:191–200, 1984) permitted three observations to be made. 1) Faunivores tend to have higher mean feature densities than either frugivores or folivores, although these differences are not consistently statistically distinct. 2) Faunifores and frugivores that feed on hard-objects have comparable mean pit frequencies. 3) Although it is impossible to distinguish faunivores and folivores on the basis of metric analysis of gross molar morphology, this distinction can be made on microwear criteria. Both hard- and soft-object faunivores exhibit much higher mean pit frequencies than primarily folivorous species. © 1993 Wiley-Liss, Inc.  相似文献   

12.
There is disagreement as to whether the mandibular condyles are stress-bearing or stress-free during mastication. In support of alternative models, analogies have been drawn with Class III levers, links, and couple systems. Physiological data are reviewed which indicate that maximum masticatory forces are generated when maxillary and mandibular teeth are in contact, and that this phase lasts for over 100 msec during many chewing strokes. During this period, the mandible can be modeled as a beam with multiple supports. Equations of simple beam theory suggest that large condylar reaction forces are present during mastication. With unilateral molar biting in man, the total condylar reaction force may be over 75% of the bite force. Analysis of a frontal projection demonstrates that up to 80% of the total condylar reaction force is borne by the contralateral (balancing side) condyle during unilateral molar biting. A comparison of human, chimpanzee (P. troglodytes), spider monkey (A. belzebuth), and macaque (Macaca sp.) morphology indicates that the frugivorous chimpanzee and spider monkey have a relatively lower condylar reaction force than the omnivorous macaque or man during molar biting. The percentage reaction force during incisal biting is lower in man than in the other primates, and lower in the frugivorous primates than in the macaque.  相似文献   

13.
Recent investigations of dental microwear have shown that such analyses may ultimately provide valuable information about the diets of fossil species. However, no background information about intraspecific variability of microwear patterns has been available until now. This study presents the results of an SEM survey of microwear patterns found on occlusal enamel of chimpanzee molars. Methods of pattern analysis are described. Selected sites on the occlusal surface included shearing, grinding, and puncture-crushing surfaces formed by both phases of the power stroke of mastication. The microwear patterns found in this sample of chimpanzees showed a high degree of regularity. However, certain parameters such as relative pit-to-striation frequencies, feature density, striation length, and pit diameter were significantly affected by facet type and molar position. Sex and age of individuals also influenced some microwear parameters, but due to the small sample size these findings are considered to be preliminary. These results show that microwear within a single species may vary because of factors that are due more to biomechanics than to diet. The study also supplies some metrical estimates of “normal” pattern variability due to functional and morphological influences. These estimates should provide a useful baseline for assessing the significance of microwear pattern differences that may be found between species of differing diets.  相似文献   

14.
Dental microwear formation on the posterior dentition is largely attributed to an organism's diet. However, some have suggested that dietary and environmental abrasives contribute more to the formation process than food, calling into question the applicability of dental microwear to the reconstruction of diet in the fossil record. Creating microwear under controlled conditions would benefit this debate, but requires accurately replicating the oral environment. This study tests the applicability of Artificial Resynthesis Technology (ART 5) to create microwear textures while mitigating the challenges of past research. ART 5 is a simulator that replicates the chewing cycle, responds to changes in food texture, and simulates the actions of the oral cavity. Surgically extracted, occluding pairs of third molars (n = 2 pairs) were used in two chewing experiments: one with dried beef and another with sand added to the dried beef. High-resolution molds were taken at 0, 50, 100, 2500, and 5000 simulated chewing cycles, which equates to approximately 1 week of chewing. Preliminary results show that ART 5 produces microwear textures. Meat alone may produce enamel prism rod exposure at 5000 cycles, although attrition cannot be ruled out. Meat with sand accelerates the wear formation process, with enamel prism rods quickly obliterated and “pit-and-scratch” microwear forming at approximately 2500 cycles. Future work with ART 5 will incorporate a more thorough experimental protocol with improved controls, pH of the simulated oral environment, and grit measurements; however, these results indicate the potential of ART 5 in untangling the complex variables of dental microwear formation.  相似文献   

15.
Determining the diet of an extinct species is paramount in any attempt to reconstruct its paleoecology. Because the distribution and mechanical properties of food items may impact postcranial, cranial, mandibular, and dental morphologies related to their procurement, ingestion, and mastication, these anatomical attributes have been studied intensively. However, while mechanical environments influence skeletal and dental features, it is not clear to what extent they dictate particular morphologies. Although biomechanical explanations have been widely applied to extinct hominins in attempts to retrodict dietary proclivities, morphology may say as much about what they were capable of eating, and perhaps more about phylogenetic history, than about the nature of the diet. Anatomical attributes may establish boundary limits, but direct evidence left by the foods that were actually (rather than hypothetically) consumed is required to reconstruct diet. Dental microwear and the stable light isotope chemistry of tooth enamel provide such evidence, and are especially powerful when used in tandem. We review the foundations for microwear and biogeochemistry in diet reconstruction, and discuss this evidence for six early hominin species (Ardipithecus ramidus, Australopithecus anamensis, Au. afarensis, Au. africanus, Paranthropus robustus, and P. boisei). The dietary signals derived from microwear and isotope chemistry are sometimes at odds with inferences from biomechanical approaches, a potentially disquieting conundrum that is particularly evident for several species.  相似文献   

16.
In the narrow-headed vole, enamel microwear of the first mandibular molar (of the protoconid and entoconid anterior enamel wall) was studied under the laboratory conditions and at the fixed feed composition. The classic parameters and the area of the enamel prism lesion were taken into account. The enamel lesion patterns caused by the tooth–tooth and tooth–food interactions have been determined. Differences were found between the voles kept on feed with different abrasive properties, as well as between the lingual and buccal conids of the first mandibular molar. In the Microtus species, the ratio of micro-lesions (pits and scratches) did not depend on the abrasive properties of the feed consumed. The extent of preservation of the enamel contour anterior edge depended on the feed composition and could be used as an indicator for indirect evaluation of the Microtus species diet.  相似文献   

17.
The anatomy of the masticatory apparatus, and particularly of the mandibular joints, has led to the view that mandibular movement in the Rodentia is predominantly propalinal, or forwards and backwards in direction. As part of an investigation into the mechanism of function of the mandibular joints in these animals, the feeding behaviour of "August" strain and "Wistar" rats was examined by cinephotography and cinefluorography. The rats were trained to feed on barium sulphate impregnated biscuit and animal cake and to drink radio-opaque liquids. Cinefluorographic recordings of ingestion, mastication, deglutition and of drinking were taken in both the lateral and dorso-ventral projections.
Analysis of the recordings has shown a fundamental separation of ingestive and masticatory activity in the rat, which can be attributed to the morphology of the jaws and particularly to the disparity in the lengths of the mandibular and maxillary diastemas. To bring the incisor teeth into occlusion for ingestion, the mandible is brought forward through the rest position and the condyle into articulation with the anterior part of the fossa. In mastication the condyle is moved backwards to bring the molar teeth into occlusion and the condyle into articulation with the posterior articular facet on the fossa. Once the mandible has been moved into the appropriate position for either ingestion or mastication and deglutition, the movements involved in the separation or chewing of the food are cyclical with combined horizontal and transverse movements as well as the fundamental vertical movement acting to open and close the mouth. The basic movement of ingestion carries the mandibular incisors upwards and forwards across the lingual surfaces of the maxillary incisors, so separating the bite. The grinding stroke of mastication is a horizontal movement carrying the mandibular molars anteriorly across the maxillary.  相似文献   

18.
Mosaic convergence of rodent dentitions   总被引:1,自引:0,他引:1  

Background

Understanding mechanisms responsible for changes in tooth morphology in the course of evolution is an area of investigation common to both paleontology and developmental biology. Detailed analyses of molar tooth crown shape have shown frequent homoplasia in mammalian evolution, which requires accurate investigation of the evolutionary pathways provided by the fossil record. The necessity of preservation of an effective occlusion has been hypothesized to functionally constrain crown morphological changes and to also facilitate convergent evolution. The Muroidea superfamily constitutes a relevant model for the study of molar crown diversification because it encompasses one third of the extant mammalian biodiversity.

Methodology/Principal Findings

Combined microwear and 3D-topographic analyses performed on fossil and extant muroid molars allow for a first quantification of the relationships between changes in crown morphology and functionality of occlusion. Based on an abundant fossil record and on a well resolved phylogeny, our results show that the most derived functional condition associates longitudinal chewing and non interlocking of cusps. This condition has been reached at least 7 times within muroids via two main types of evolutionary pathways each respecting functional continuity. In the first type, the flattening of tooth crown which induces the removal of cusp interlocking occurs before the rotation of the chewing movement. In the second type however, flattening is subsequent to rotation of the chewing movement which can be associated with certain changes in cusp morphology.

Conclusion/Significance

The reverse orders of the changes involved in these different pathways reveal a mosaic evolution of mammalian dentition in which direction of chewing and crown shape seem to be partly decoupled. Either can change in respect to strong functional constraints affecting occlusion which thereby limit the number of the possible pathways. Because convergent pathways imply distinct ontogenetic trajectories, new Evo/Devo comparative studies on cusp morphogenesis are necessary.  相似文献   

19.
The mandibular third premolar (P3) of Australopithecus afarensis is notable for extensive morphological variability (e.g., metaconid presence/absence, closure of the anterior fovea, root number) and temporal trends in crown length and shape change over its 700 Ka time range. Hominins preceding A. afarensis have unicuspid, mesiodistally elongated P3s with smaller talonids, and subsequent australopiths have bicuspid, more symmetrically-shaped P3 crowns with expanded talonids. For these features, A. afarensis is intermediate and, thus, evinces the incipient stages of P3 molarization. Here, we examine A. afarensis P3 Phase II microwear and compare it with that of Australopithecus africanus and Cercocebus atys, an extant hard-object specialist, to assess whether the role of the P3 in food processing changed over time in A. afarensis. Premolar Phase II microwear textures are also compared with those of the molars to look for evidence of functional differentiation along the tooth row (i.e., that foods with different mechanical properties were processed by separate regions of the postcanine battery). Microwear textures were also examined along the mesial protoconid crest, the site of occlusion with the maxillary canine, of the A. afarensis P3 and compared with the same region in Pan troglodytes to determine whether microwear can be useful for identifying changes in the occlusal relationship between the P3 and maxillary canine in early Australopithecus. Finally, temporal trends in P3 Phase II and mesial microwear are considered. Results indicate that 1) both the P3 and molar Phase II facets of A. afarensis have less complex microwear textures than in A. africanus or C. atys; 2) A. afarensis P3 and molar Phase II textures differ, though not to the extent seen in taxa that eat hard and tough items; 3) microwear along the A. afarensis mesial protoconid crest is clearly distinct from that of the P. troglodytes, indicating that there is no honing equivalent in A. afarensis; and 4) there is little evidence of change over time in A. afarensis P3 microwear on either the mesial or Phase II facet. In sum, these results provide no evidence that A. afarensis routinely loaded either its premolars or molars to process hard objects or that A. afarensis P3 function changed over time.  相似文献   

20.
We describe dental microwear in baboons (Papio hamadryas sensu lato) from the anubis-hamadryas hybrid zone of Awash National Park, Ethiopia, outline its variation with sex and age, and attempt to relate the observed microwear pattern to environment and diet. Casts of the maxillary second molar of 52 adult and subadult individuals of both sexes were examined with a scanning electron microscope at x 500. Digitized micrographs were taken at a consistent location on facet 9, and microwear was recorded with an image analysis software package. Univariate and multivariate statistics were used to investigate the shape, size, and density of microwear features. The overall pattern of microwear exhibits an unusual combination of high feature density, with numerous small pits and relatively wide striations, and a high correlation between width of pits and striations across individuals. We interpret this pattern as predominantly the consequence of abrasion by relatively small-caliber environmental grit when accidentally ingested with tough foods such as dried seeds and fruits, as expected in a terrestrial omnivore living in a dusty habitat. Statistical analysis revealed no significant differences between groups defined by sex, age, or troop membership, a result consistent with qualitative observations of feeding habits in this population, and which lends no support to the hypothesis that the longer jaws of adult males should result in longer striations. A trend towards greater feature density in females, however, might be due to limited sexual dinichism, and merits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号