首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Yoshido  K Sahara  F Marec  Y Matsuda 《Heredity》2011,106(4):614-624
Geographical subspecies of wild silkmoths, Samia cynthia ssp. (Lepidoptera: Saturniidae), differ considerably in sex chromosome constitution owing to sex chromosome fusions with autosomes, which leads to variation in chromosome numbers. We cloned S. cynthia orthologues of 16 Bombyx mori genes and mapped them to chromosome spreads of S. cynthia subspecies by fluorescence in situ hybridization (FISH) to determine the origin of S. cynthia neo-sex chromosomes. FISH mapping revealed that the Z chromosome and chromosome 12 of B. mori correspond to the Z chromosome and an autosome (A1) of S. c. ricini (Vietnam population, 2n=27, Z0 in female moths), respectively. B. mori chromosome 11 corresponds partly to another autosome (A2) and partly to a chromosome carrying nucleolar organizer region (NOR) of this subspecies. The NOR chromosome of S. c. ricini is also partly homologous to B. mori chromosome 24. Furthermore, our results revealed that two A1 homologues each fused with the W and Z chromosomes in a common ancestor of both Japanese subspecies S. c. walkeri (Sapporo population, 2n=26, neo-Wneo-Z) and S. cynthia subsp. indet. (Nagano population, 2n=25, neo-WZ1Z2). One homologue, corresponding to the A2 autosome in S. c. ricini and S. c. walkeri, fused with the W chromosome in S. cynthia subsp. indet. Consequently, the other homologue became a Z2 chromosome. These results clearly showed a step-by-step evolution of the neo-sex chromosomes by repeated autosome–sex chromosome fusions. We suggest that the rearrangements of sex chromosomes may facilitate divergence of S. cynthia subspecies towards speciation.  相似文献   

2.
The effect of a normal mouse X chromosome on the chromosome segregation of mouse-Chinese hamster somatic cell hybrids was determined by (i) producing hybrids between the mouse sarcoma line CMS4 and a microcell hybrid (mfe4) of the hamster line E36, containing a mouse X chromosome from a normal cell; (ii) isolating hybrids between CMS4 and a 6-thioguanine selected (X minus) mfe4 subpopulation; (iii) comparing the direction of segregation in the two sets of hybrids. It was found that the normal X chromosome, like the X chromosomes from two MCA-transformed sarcoma lines reported previously [9], has the ability to switch the chromosome segregation of mouse-Chinese hamster somatic cell hybrids. We conclude that the reversal in chromosome segregation is mediated by factors located on the X chromosome. We designate these genetic elements as segregation reversal genes or sr genes.  相似文献   

3.
4.
We have investigated the occurrence of dosage compensation in D. willistoni and D. pseudoobscura, two species whose X chromosome is metacentric with one arm homologous to the X and the other homologous to the left arm of chromosome 3 of D. melanogaster. Crude extracts were assayed for isocitrate dehydrogenase (XR), glucose-6-phosphate dehydrogenase (XL?), 6-phosphogluconate dehydrogenase (XL?), and α-glycerophosphate dehydrogenase (chromosome 2) in D. willistoni, and for esterase-5 (XR), glucose-6-phosphate dehydrogenase (XL?), 6-phosphogluconate dehydrogenase (XL?) and amylase (chromosome 3) in D. pseudoobscura. Our results indicate that a mechanism for dosage compensation is operative in both arms of the X chromosome of these two species.  相似文献   

5.
K H Antman  D M Livingston 《Cell》1980,19(3):627-635
We present the nucleotide sequences of the Gγ- and Aγ-globin genes from one chromosome (A) and of most of the Aγ gene from the other chromosome (B) of the same individual. All three genes have a small, highly conserved intervening sequence (IVS1) of 122 bp located between codons 30 and 31 and a large intervening sequence (IVS2) of variable length (866–904 bp) between codons 104 and 105. A stretch of simple sequence DNA occurs in IVS2 which appears to be a hot spot for recombination. On the 5′ side of this simple sequence, the allelic Aγ genes differ considerably in IVS2 whereas the nonallelic Gγ- and Aγ genes from chromosome A differ only slightly. Yet on the 3′ side of the simple sequence, the allelic genes differ only slightly whereas the nonallelic genes differ considerably. We hypothesize that the 5′ two thirds of the Aγ gene on chromosome A has been “converted” by an intergenic exchange to become more like the Gγ gene on its own chromosome A than it is like the allelic Aγ gene on the other chromosome B. Our sequence data suggest that intergenic conversions occur in the germ line. The DNA sequence differences between two chromosomes from a single individual strongly suggest that DNA sequence polymorphisms for localized deletions, additions and base substitutions are very common in human populations.  相似文献   

6.
The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a Drosophila simulans chromosome 4 (sim-IV) introgressed into D. melanogaster. These two species differ by ∼12–13% at synonymous sites and several genes essential for chromosome segregation have experienced recurrent adaptive evolution since their divergence. Furthermore, their chromosome 4s are visibly different due to heterochromatin divergence, including in the AATAT pericentromeric satellite DNA. We find a visible imbalance in the positioning of the two chromosome 4s in sim-IV/mel-IV heterozygote and also replicate this finding with a D. melanogaster 4 containing a heterochromatic deletion. These results demonstrate that heterochromatin abundance can have a visible effect on chromosome positioning during meiosis. Despite this effect, however, we find that sim-IV segregates normally in both diplo and triplo 4 D. melanogaster females and does not experience elevated nondisjunction. We conclude that segregation abnormalities and a high level of meiotic drive are not inevitable byproducts of extensive heterochromatin divergence. Animal chromosomes typically contain large amounts of noncoding repetitive DNA that nevertheless varies widely between species. This variation may potentially induce non-Mendelian transmission of chromosomes. We have examined the meiotic properties and transmission of a highly diverged chromosome 4 from a foreign species within the fruitfly Drosophila melanogaster. This chromosome has substantially less of a simple sequence repeat than does D. melanogaster 4, and we find that this difference results in altered positioning when chromosomes align during meiosis. Yet this foreign chromosome segregates at normal frequencies, demonstrating that chromosome segregation can be robust to major differences in repetitive DNA abundance.  相似文献   

7.
Hornets, the largest social wasps, have a reputation of being facultatively nocturnal. Here we confirm flight activity of hornet workers in dim twilight. We studied the eyes and ocelli of European hornets (Vespa crabro) and common wasps (Vespula vulgaris) with the goal to find the optical and anatomical adaptations that enable them to fly in dim light. Adaptations described for obligately nocturnal hymenoptera such as the bees Xylocopa tranquebarica and Megalopta genalis and the wasp Apoica pallens include large ocelli and compound eyes with wide rhabdoms and large facet lenses. Interestingly, we did not find any such adaptations in hornet eyes or ocelli. On the contrary, their eyes are even less sensitive than those of the obligately diurnal common wasps. Therefore we conclude that hornets, like several facultatively nocturnal bee species such as Apis mellifera adansonii, A. dorsata and X. tenuiscapa are capable of seeing in dim light simply due to the large body and thus eye size. We propose that neural pooling strategies and behavioural adaptations precede anatomical adaptations in the eyes and ocelli when insects with apposition compound eyes turn to dim light activity.  相似文献   

8.
Fragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs). RSZs are proposed to be homologous to mammalian common fragile sites (CFSs) whose stability is regulated by ATR. Perturbation during S phase, leading to elevated levels of stalled replication forks, is necessary but not sufficient for chromosome breakage at RSZs or CFSs. To address the nature of additional event(s) required for the break formation, we examined involvement of the currently known or implicated mechanisms of endogenous chromosome breakage, including errors in replication fork restart, premature mitotic chromosome condensation, spindle tension, anaphase, and cytokinesis. Results revealed that chromosome breakage at RSZs is independent of the RAD52 epistasis group genes and of TOP3, SGS1, SRS2, MMS4, or MUS81, indicating that homologous recombination and other recombination-related processes associated with replication fork restart are unlikely to be involved. We also found spindle force, anaphase, or cytokinesis to be dispensable. RSZ breakage, however, required genes encoding condensin subunits (YCG1, YSC4) and topoisomerase II (TOP2). We propose that chromosome break formation at RSZs following Mec1 inactivation, a model for mammalian fragile site breakage, is mediated by internal chromosomal stress generated during mitotic chromosome condensation.  相似文献   

9.
We describe a method for generation and maintenance of translocations that move large autosomal segments onto the Y chromosome. Using this strategy we produced (2;Y) translocations that relocate between 1.5 and 4.8 Mb of the 2nd chromosome.. All translocations were easily balanced over a male-specific lethal 1 (msl-1) mutant chromosome. Both halves of the translocation carry visible markers, as well as P-element ends that enable molecular confirmation. Halves of these translocations can be separated to produce offspring with duplications and with lethal second chromosome deficiencies . Such large deficiencies are otherwise tedious to generate and maintain.  相似文献   

10.
Meiotic chromosome segregation must occur with high fidelity in order to prevent the generation of aneuploid cells. We have previously described the identification and genetic characterization of a yeast mutant with defects in meiotic sister-chromatid segregation. We attributed the phenotype in this mutant to a dominant allele, which we referred to as SID1-1. These mutants appeared to exhibit high levels of nondisjunction and precocious separation of sister-chromatids of chromosome III, as well as precocious separation of sister chromatids of chromosome VIII and a univalent artificial chromosome. We show here that the unusual meiotic behavior of chromosome III in these strains is due to the presence of a ring III chromosome, rather than a mutant gene. Additional experiments demonstrate that a ring III/rod III pair alters the meiotic segregation of a univalent artificial chromosome.  相似文献   

11.
《Gene》2014,542(2):263-265
We present the case of two brothers who were referred to a male infertility clinic for infertility workup. Conventional chromosome analysis and Y chromosome microdeletions did not reveal any genetic alterations. We utilized the chromosome microarray analysis (CMA) to identify novel and common variations associated with this severely impaired spermatogenesis cases. CMA specific results showed a common deletion in the 15q15.3 region that harbors genes like CATSPER2, STRC and PPIP5K1 in both cases (M18 and M19). In addition we identified small duplication in X and 11 chromosomes of M19. This is the first familial case report from India on occurrence of CATSPER gene deletion in human male infertility.  相似文献   

12.
The Arabidopsis tornado1 (trn1) mutation causes severe dwarfism combined with twisted growth of all organs. We present a chromosome landing strategy, using amplified restriction fragment length polymorphism (AFLP) marker technology, for the isolation of the TRN1 gene. The recessive trn1 mutation was identified in a C24 transgenic line and is located 5?cM from a T-DNA insertion. We mapped the TRN1 locus to the bottom half of chromosome 5 relative to visible and restriction fragment length polymorphism (RFLP) markers. Recombinant classes within a 3-cM region around TRN1 were used to build a high-resolution map in this region, using the AFLP technique. Approximately 300 primer combinations have been used to test about 26?000 fragments for polymorphisms. Seventeen of these AFLP markers were identified in the 3-cM region around TRN1. These markers were mapped within this region using individual recombinants. Four of these AFLP markers co-segregate with TRN1 whereas one maps at one recombinant below TRN1. We isolated and cloned three of these AFLP markers. These markers identified two yeast artificial chromosome (YAC) clones, containing the RFLP marker above and the AFLP marker below TRN1, demonstrating that these YACs span the TRN1 locus and that chromosome landing has been achieved, using an AFLP-based strategy.  相似文献   

13.
Multiple polyploidizations with divergent consequences in the grass subtribe Saccharinae provide a singular opportunity to study in situ adaptation of a genome to the duplicated state, heretofore known primarily from paleogenomics. We show that allopolyploidy in a common Miscanthus-Saccharum ancestor ∼3.8 to 4.6 million years ago closely coincides in time with their divergence from the Sorghum lineage. Subsequent Saccharum-specific autopolyploidy may have created pseudo-paralogous chromosome groups with random pairing within a group but infrequent pairing between groups. High chromosome number may reduce differentiation among Saccharum pseudo-paralogs by increasing opportunities for recombinations, with the lower chromosome numbers of Miscanthus favoring the return to disomic inheritance. The widespread tendency of plant chromosome numbers to recursively return to a narrow range following genome duplication appears to be occurring now in Saccharum spontaneum based on rich polymorphism for chromosome number among genotypes, with past reductions indicated by condensations of two ancestral chromosomes in Miscanthus (now n = 19) and perhaps as many as 10 in the Narenga-Sclerostachya clade (n = 15).  相似文献   

14.
The centromeric histone H3 variant (CenH3) is essential for chromosome segregation in eukaryotes. We identify posttranslational modifications of Saccharomyces cerevisiae CenH3, Cse4. Functional characterization of cse4 phosphorylation mutants shows growth and chromosome segregation defects when combined with kinetochore mutants okp1 and ame1. Using a phosphoserine-specific antibody, we show that the association of phosphorylated Cse4 with centromeres increases in response to defective microtubule attachment or reduced cohesion. We determine that evolutionarily conserved Ipl1/Aurora B contributes to phosphorylation of Cse4, as levels of phosphorylated Cse4 are reduced at centromeres in ipl1 strains in vivo, and in vitro assays show phosphorylation of Cse4 by Ipl1. Consistent with these results, we observe that a phosphomimetic cse4-4SD mutant suppresses the temperature-sensitive growth of ipl1-2 and Ipl1 substrate mutants dam1 spc34 and ndc80, which are defective for chromosome biorientation. Furthermore, cell biology approaches using a green fluorescent protein–labeled chromosome show that cse4-4SD suppresses chromosome segregation defects in dam1 spc34 strains. On the basis of these results, we propose that phosphorylation of Cse4 destabilizes defective kinetochores to promote biorientation and ensure faithful chromosome segregation. Taken together, our results provide a detailed analysis, in vivo and in vitro, of Cse4 phosphorylation and its role in promoting faithful chromosome segregation.  相似文献   

15.
This study uses molecular and cytogenetic methods to determine the origin of a B chromosome in some males of the wasp Trichogramma kaykai. This so-called paternal sex ratio (PSR) chromosome transmits only through sperm and shortly after fertilization triggers degeneration of the paternal genome, while keeping itself intact. The resulting embryos develop into haploid B-chromosome-carrying males. Another PSR chromosome with a very similar mode of action is found in the distantly related wasp Nasonia vitripennis and its origin was traced by transposon similarity to the genus Trichomalopsis, which is closely related to Nasonia. To determine whether both PSR chromosomes have a similar origin we aimed to reveal the origin of the Trichogramma PSR chromosome. Using fluorescent in situ hybridization, we discovered a major satellite repeat on the PSR chromosome, the 45S ribosomal DNA. Analysis of the internal transcribed spacer 2 (ITS2) of this repeat showed the presence of multiple ITS2 sequences on the PSR chromosome resembling either the ITS2 of T. oleae or of T. kaykai. We therefore conclude that the Trichogramma PSR chromosome originates from T. oleae or a T. oleae-like species. Our results are consistent with different origins for the PSR chromosomes in Trichogramma and Nasonia.  相似文献   

16.
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.  相似文献   

17.
A method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae. A strain monosomic for chromosome I (i.e., haploid for chromosome I and diploid for all other chromosomes) was mutagenized with either ethyl methanesulfonate or N-methyl-N'-nitro-N -nitrosoguanidine and screened for temperature-sensitive (Ts- ) mutants capable of growth on rich, glucose-containing medium at 25° but not at 37°. Recessive mutations induced on chromosome I are expressed, whereas those on the diploid chromosomes are usually not expressed because of the presence of wild-type alleles on the homologous chromosomes. Dominant ts mutations on all chromosomes should also be expressed, but these appeared rarely. — Of the 41 ts mutations analyzed, 32 mapped on chromosome I. These 32 mutations fell into only three complementation groups, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19). We recovered 16 or 17 independent mutations in CDC15, 12 independent mutations in CDC24 and three independent mutations in PYK1. A fourth gene on chromosome I, MAK16, is known to be capable of giving rise to a ts-lethal allele, but we recovered no mutations in this gene. The remaining nine mutations isolated using the monosomic strain appeared not to map on chromosome I and were apparently expressed in the original mutants because they had become homozygous or hemizygous by mitotic recombination or chromosome loss. — The available information about the size of chromosome I suggests that it should contain approximately 60–100 genes. However, our isolation in the monosomic strain of multiple, independent alleles of just three genes suggests that only a small proportion of the genes on chromosome I is easily mutable to give a Ts--lethal phenotype. — During these studies, we located CDC24 on chromosome I and determined that it is centromere distal to PYK1 on the left arm of the chromosome.  相似文献   

18.
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.  相似文献   

19.

Background and Aims

For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family.

Methods

Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae.

Key Results

The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree.

Conclusions

The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades.  相似文献   

20.
We set out to define the holoprosencephaly (HPE) critical region on chromosome 21 and also to determine whether there were human homologues of the Drosophila single-minded (sim) gene that might be involved in HPE. Analysis of somatic cell hybrid clones that contained rearranged chromosomes 21 from HPE patients defined the HPE minimal critical region in 21q22.3 as D21S113 to qter. We used established somatic cell hybrid mapping panels to map SIM2 to chromosome 21 within subbands q22.2-q22.3. Analysis of the HPE patient–derived somatic cell hybrids showed that SIM2 is not deleted in two of three patients and thus is not a likely candidate for HPE1, the HPE gene on chromosome 21. However, SIM2 does map within the Down syndrome critical region and thus is a candidate gene that might contribute to the Down syndrome phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号