首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ground crickets Allonemobius fasciatus and A. socius meet in a mosaic hybrid zone that stretches from New Jersey at least as far west as Illinois. Within mixed populations from the contact zone, “pure” species individuals predominate. To determine whether hybrids are less viable than pure-species individuals, and to assess whether the high proportion of pure-species individuals in mixed populations results from hybrid inviability, we performed a cohort analysis. In this study, five mixed populations from the hybrid zone were each sampled three to five times from the fall of 1986 to the spring of 1988. Individuals were assigned to one of three categories based on their genotypes: A. socius (individuals harboring only alleles unique to A. socius), hybrid (individuals with alleles unique to both species), and A. fasciatus (individuals harboring only alleles unique to A. fasciatus). This sampling and measurement scheme permitted monitoring of the proportion of hybrid individuals in a population over time. The results were fairly consistent. The relative survival of A. socius was greater than the relative survival of members of the other two groups in four of the five populations. The relative viability of A. fasciatus was greater than that of hybrids in one population, approximately equal to that of hybrids in two populations, and less than that of hybrids in two populations. These results not only shed light on an important component of fitness, viability from hatching to adulthood, but they demonstrate that loss of hybrid individuals during the course of the field season will not explain deviations from random mating expectations present in mixed populations in late summer. The deviations must be due to assortative mating or to a reproductive barrier operating prior to egg hatch.  相似文献   

2.
Despite its role in homogenizing populations, hybridization has also been proposed as a means to generate new species. The conceptual basis for this idea is that hybridization can result in novel phenotypes through recombination between the parental genomes, allowing a hybrid population to occupy ecological niches unavailable to parental species. Here we present an alternative model of the evolution of reproductive isolation in hybrid populations that occurs as a simple consequence of selection against genetic incompatibilities. Unlike previous models of hybrid speciation, our model does not incorporate inbreeding, or assume that hybrids have an ecological or reproductive fitness advantage relative to parental populations. We show that reproductive isolation between hybrids and parental species can evolve frequently and rapidly under this model, even in the presence of substantial ongoing immigration from parental species and strong selection against hybrids. An interesting prediction of our model is that replicate hybrid populations formed from the same pair of parental species can evolve reproductive isolation from each other. This non-adaptive process can therefore generate patterns of species diversity and relatedness that resemble an adaptive radiation. Intriguingly, several known hybrid species exhibit patterns of reproductive isolation consistent with the predictions of our model.  相似文献   

3.
Hybrid zones provide natural experiments where new combinations of genotypes and phenotypes are produced. Studying the reshuffling of genotypes and remodeling of phenotypes in these zones is of particular interest to document the building of reproductive isolation and the possible emergence of transgressive phenotypes that can be a source of evolutionary novelties. Here, we specifically investigate the morphological variation patterns associated with introgressive hybridization between two species of sole, Solea senegalensis and Solea aegyptiaca. The relationship between genetic composition at nuclear loci and individual body shape variation was studied in four populations sampled across the hybrid zone located in northern Tunisia. A strong correlation between genetic and phenotypic variation was observed among all individuals but not within populations, including the two most admixed ones. Morphological convergence between parental species was observed close to the contact zone. Nevertheless, the samples taken closest to the hybrid zone also displayed deviant segregation of genotypes and phenotypes, as well as transgressive phenotypes. In these samples, deviant body shape variation could be partly attributed to a reduced condition index, and the distorted genetic composition was most likely due to missing allelic combinations. These results were interpreted as an indication of hybrid breakdown, which likely contributes to postmating reproductive isolation between the two species.  相似文献   

4.
Hybrid zones have long intrigued evolutionary biologists and provide a natural laboratory to explore the evolution of reproductive isolation (speciation). Molecular characterization of hybrid zone dynamics can provide insight into the strength of reproductive isolation as well as the underlying evolutionary processes shaping gene flow. Approximately one-third of darter species naturally hybridize making this species-rich North American freshwater teleost fish clade an ideal system to investigate the extent and direction of hybridization. The objective of this study was to use diagnostic microsatellite markers to calculate genetic hybrid index scores of two syntopic, but distantly related darter species, Etheostoma bison and Etheostoma caeruleum. A combination of hybrid index scores, assignment tests, and mitochondrial haplotype profiles uncovered mixed ancestry in approximately 6 % of sampled adult individuals, supporting contemporaneous hybridization that was previously undocumented in E. bison. Moreover, hybrids were not limited to the F1 generation, but encompassed the entire suite of hybrid categories (F1, F2 and backcross hybrids). The low number of hybrids assigned to each hybrid category represents a bimodal hybrid zone, suggesting reproductive isolation is strong (but incomplete) and also advocates for the ability of hybrids to produce second-generation hybrids and backcross into both parental species, mediating introgression across species boundaries. To this end, cytonuclear profiles of the sampled parental species and hybrids were consistent with bidirectional gene flow, although there was an overall trend of asymmetric hybridization between E. caeruleum females and E. bison males. The spatiotemporal variation in hybridization rates and resulting cytonuclear patterns expanded on in this study provide a comparative genetic framework on which future studies can begin to elucidate the underlying processes that not only generate a mosaic hybrid zone, but maintain the distinctness of species in the face of gene flow.  相似文献   

5.
Zeng YF  Liao WJ  Petit RJ  Zhang DY 《Molecular ecology》2011,20(23):4995-5011
Studying geographic variation in the rate of hybridization between closely related species could provide a useful window on the evolution of reproductive isolation. Reinforcement theory predicts greater prezygotic isolation in areas of prolonged contact between recently diverged species than in areas of recent contact, which implies that old contact zones would be dominated by parental phenotypes with few hybrids (bimodal hybrid zones), whereas recent contact zones would be characterized by hybrid swarms (unimodal hybrid zones). Here, we investigate how the hybrid zones of two closely related Chinese oaks, Quercus mongolica and Q. liaotungensis, are structured geographically using both nuclear and chloroplast markers. We found that populations of Q. liaotungensis located around the Changbai Mountains in Northeast China, an inferred glacial refugium, were introgressed by genes from Q. mongolica, suggesting historical contact between the two species in this region. However, these introgressed populations form sharp bimodal hybrid zones with Q. mongolica. In contrast, populations of Q. liaotungensis located in North China, which show no sign of ancient introgression with Q. mongolica, form unimodal hybrid zones with Q. mongolica. These results are consistent with the hypothesis that selection against hybrids has had sufficient time to reinforce the reproductive barriers between Q. liaotungensis and Q. mongolica in Northeast China but not in North China.  相似文献   

6.
Unravelling the form of selection acting on hybrids of ecotypes undergoing ecological speciation is essential to understand the mechanisms behind the evolution of reproductive isolation in the face of gene flow. Shell phenotype is known to be affected by natural selection and is involved in the fitness of the marine snail Littorina saxatilis. Here, we studied the association between shell traits and fitness in hybrids in order to determine the relative role of exogenous and endogenous selection in this hybrid zone of L. saxatilis. We show that directional selection is the predominant mode of selection among hybrids. We also show its heterogeneity, affecting different shell traits, within populations at the level of the microhabitat. Therefore, endogenous selection mechanisms are most probably lacking in this hybrid zone and exogenous barriers (pre‐ and post‐zygotic) are possibly one of the main forces behind the evolution of barriers to gene flow between these ecologically divergent ecotypes. This study shows how this barrier might represent an important type of reproductive isolation within ecological speciation, and this should be taken into account in future studies of speciation in hybrid zones. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 391–400.  相似文献   

7.
Studies of hybrid zones can inform our understanding of reproductive isolation and speciation. Two species of brown lemur (Eulemur rufifrons and E. cinereiceps) form an apparently stable hybrid zone in the Andringitra region of south‐eastern Madagascar. The aim of this study was to identify factors that contribute to this stability. We sampled animals at 11 sites along a 90‐km transect through the hybrid zone and examined variation in 26 microsatellites, the D‐loop region of mitochondrial DNA, six pelage and nine morphological traits; we also included samples collected in more distant allopatric sites. Clines in these traits were noncoincident, and there was no increase in either inbreeding coefficients or linkage disequilibrium at the centre of the zone. These results could suggest that the hybrid zone is maintained by weak selection against hybrids, conforming to either the tension zone or geographical selection‐gradient model. However, a closer examination of clines in pelage and microsatellites indicates that these clines are not sigmoid or stepped in shape but instead plateau at their centre. Sites within the hybrid zone also occur in a distinct habitat, characterized by greater seasonality in precipitation and lower seasonality in temperature. Together, these findings suggest that the hybrid zone may follow the bounded superiority model, with exogenous selection favouring hybrids within the transitional zone. These findings are noteworthy, as examples supporting the bounded superiority model are rare and may indicate a process of ecologically driven speciation without geographical isolation.  相似文献   

8.
Hybrid zones are found wherever two populations distinguishable on the basis of heritable characters overlap spatially and temporally and hybridization occurs. If hybrids have lower fitness than the parental types a tension zone may emerge, in which there is a barrier to gene flow between the two parental populations. Here we discuss a hybrid zone between two honeybee subspecies, Apis mellifera capensis and A. m. scutellata and argue that this zone is an example of a tension zone. This tension zone is particularly interesting because A. m. capensis can be a lethal social parasite of A. m. scutellata. However, despite its parasitic potential, A. m. capensis appears to be unable to increase its natural range unassisted. We propose three interlinked mechanisms that could maintain the South African honeybee hybrid zone: (1) low fitness of intercrossed and genetically mixed colonies arising from inadequate regulation of worker reproduction; (2) higher reproductive success of A. m. scutellata via both high dispersal rates into the hybrid zone and increased competitiveness of males, countered by (3) the parasitic nature of A. m. capensis.  相似文献   

9.

Background and Aims

In the sexually deceptive Ophrys genus, species isolation is generally considered ethological and occurs via different, specific pollinators, but there are cases in which Ophrys species can share a common pollinator and differ in pollen placement on the body of the insect. In that condition, species are expected to be reproductively isolated through a pre-mating mechanical barrier. Here, the relative contribution of pre- vs. post-mating barriers to gene flow among two Ophrys species that share a common pollinator and can occur in sympatry is studied.

Methods

A natural hybrid zone on Sardinia between O. iricolor and O. incubacea, sharing Andrena morio as pollinator, was investigated by analysing floral traits involved in pollinator attraction as odour extracts both for non-active and active compounds and for labellum morphology. The genetic architecture of the hybrid zone was also estimated with amplified fragment length polymorphism (AFLP) markers, and pollination fitness and seed set of both parental species and their hybrids in the sympatric zone were estimated by controlled crosses.

Key Results

Although hybrids were intermediate between parental species in labellum morphology and non-active odour compounds, both parental species and hybrids produced a similar odour bouquet for active compounds. However, hybrids produced significantly lower fruit and seed set than parental species, and the genetic architecture of the hybrid zone suggests that they were mostly first-generation hybrids.

Conclusions

The two parental species hybridize in sympatry as a consequence of pollinator overlap and weak mechanical isolation, but post-zygotic barriers reduce hybrid frequency and fitness, and prevent extensive introgression. These results highlight a significant contribution of late post-mating barriers, such as chromosomal divergence, for maintaining reproductive isolation, in an orchid group for which pre-mating barriers are often considered predominant.Key words: AFLP markers, floral scent variation, hybrid zone, hybrid fitness, Ophrys iricolor, Ophrys incubacea, reproductive isolation, sexual deception  相似文献   

10.
The multiple discrete hybrid zones that characterize Mytilus blue mussels allow a novel, non-manipulative, examination of the selective pressures that create and maintain species. If endogenous genetic incompatibility is solely responsible for post-zygotic isolation, then individuals of a specified hybrid genotype are expected to show similar average fitness across environments. However, if hybrid fitness differs across environments, then exogenous selection is implicated, either via ecological selection or environment-specific expression of intrinsic genetic incompatibilities. Correspondence between developmental instability of hybrids and heterozygote deficiency, estimated in two M. trossulus×M. galloprovincialis hybrid zones on the coast of North America, indicates that environment-dependent selection against hybrids may contribute to reproductive isolation among Pacific Mytilus species.  相似文献   

11.
The evolutionary consequences of hybridization ultimately depend on the magnitude of reproductive isolation between hybrids and their parents. We evaluated the relative contributions of pre-and post-zygotic barriers to reproduction for hybrid formation, hybrid persistence and potential for reproductive isolation of hybrids formed between two Rhododendron species,R. spiciferum and R. spinuliferum. Our study established that incomplete reproductive isolation promotes hybrid formation and persistence and delays hybrid speciation.All pre-zygotic barriers to reproduction leading to hybrid formation are incomplete: parental species have overlapping flowering; they share the same pollinators;reciprocal assessments of pollen tube germination and growth do not differ among parents. The absence of post-zygotic barriers between parental taxa indicates that the persistence of hybrids is likely. Reproductive isolation was incomplete between hybrids and parents in all cases studied, although asymmetric differences in reproductive fitness were prevalent and possibly explain the genetic structure of natural hybrid swarms where hybridization is known to be bidirectional but asymmetric. Introgression, rather than speciation, is a probable evolutionary outcome of hybridization between the two Rhododendron taxa. Our study provides insights into understanding the evolutionary implications of natural hybridization in woody plants.  相似文献   

12.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

13.
In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity.  相似文献   

14.
15.
Reproductive isolation between two taxa may be due to endogenous selection, which is generated by incompatibilities between the respective genomes, to exogenous selection, which is generated by differential adaptations to alternative environments, or to both. The continuing debate over the relative importance of either mode of selection has highlighted the need for unambiguous data on the fitness of hybrid genotypes. The hybrid zone between the fire-bellied toad (Bombina bombina) and the yellow-bellied toad (B. variegata) in central Europe involves adaptation to different environments, but evidence of hybrid dysfunction is equivocal. In this study, we followed the development under laboratory conditions of naturally laid eggs collected from a transect across the Bombina hybrid zone in Croatia. Fitness was significantly reduced in hybrid populations: Egg batches from the center of the hybrid zone showed significantly higher embryonic and larval mortality and higher frequencies of morphological abnormalities relative to either parental type. Overall mortality from day of egg collection to three weeks after hatching reached 20% in central hybrid populations, compared to 2% in pure populations. There was no significant difference in fitness between two parental types. Within hybrid populations, there was considerable variation in fitness, with some genotypes showing no evidence of reduced viability. We discuss the implications of these findings for our understanding of barriers to gene flow between species.  相似文献   

16.
Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. We show that widespread hybridization has occurred between two neo-tropical stream fishes with partial reproductive isolation. Phylogenetic analyses of mitochondrial sequence data showed that the swordtail fish Xiphophorus birchmanni is monophyletic and that X. malinche is part of an independent monophyletic clade with other species. Using informative single nucleotide polymorphisms in one mitochondrial and three nuclear intron loci, we genotyped 776 specimens collected from twenty-three sites along seven separate stream reaches. Hybrid zones occurred in replicated fashion in all stream reaches along a gradient from high to low elevation. Genotyping revealed substantial variation in parental and hybrid frequencies among localities. Tests of F(IS) and linkage disequilibrium (LD) revealed generally low F(IS) and LD except in five populations where both parental species and hybrids were found suggesting incomplete reproductive isolation. In these locations, heterozygote deficiency and LD were high, which suggests either selection against early generation hybrids or assortative mating. These data lay the foundation to study the adaptive basis of the replicated hybrid zone structure and for future integration of behaviour and genetics to determine the processes that lead to the population genetic patterns observed in these hybrid zones.  相似文献   

17.
Steep clinal transitions in one or several inherited characters between genetically distinct populations are usually referred to as hybrid zones. Essentially two different mechanisms may maintain steep genetic clines. Either selection acts against hybrids that are unfit over the entire zone due to their mixed genetic origin (endogenous selection), or hybrids and parental types attain different fitness values in different parts of the cline (exogenous selection). Survival rate estimates of hybrids and parental forms in different regions of the cline may be used to distinguish between these models to assess how the cline is maintained. We used reciprocal transplants to test the relative survival rates of two parental ecotypes and their hybrids over microscale hybrid zones in the direct-developing marine snail Littorina saxatilis (Olivi) on the rocky shores of Galicia, Spain. One of the parental forms occupies upper and the other lower shores, and the hybrids are found at various proportions (1–38%) along with both parental forms in a midshore zone a few meters wide. The survival rate over one month was 39-52% of the native ecotype on upper shores, but only 2-8% for the lower-shore ecotype. In contrast, only 4-8% of the upper-shore ecotype but 53% of large (> 6 mm) and 8% of small (3-6 mm) native lower-shore ecotype survived in the lower shores. In the midshores, both the two parental ecotypes and the hybrids survived about equally well. Thus there is a considerable advantage for the native ecotypes in the upper and lower shores, while in the hybrid zone none of the morphs, hybrids included, are favored. This indicates that the dimorphism of L. saxatilis is maintained by steep cross-shore selection gradients, thus supporting the selection-gradient model of hybrid zones. We performed field and laboratory experiments that suggest physical factors and predation as important selective agents. Earlier studies indicate assortative mating between the two ecotypes in the midshore. This is unexpected in a hybrid zone maintained by selection gradients, and it seems as if the reproductive barrier compresses the hybrid zone considerably.  相似文献   

18.
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal‐dependent and dispersal‐independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later‐generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingiiL. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.  相似文献   

19.
Parapatric hybridization between the chromosomal race “CD” (2n = 22) and standard karyotype populations (2n = 40) of Mus domesticus occurs extensively in central Italy. The present paper reports the results of a ctogenetic surve on a transect crossin the hybrid zone north of Rome. No clinal variation in eitier diloid nuders and chromosome frequencies was found to occur in this area, and drift seems to be responsible for the observed atchy pattern of variation. The previous assumption of a strong fertility reduction in structuray heterozyous hybrids contrasts sharply with the width (32 km) of the zone and the average structural aeterozygosity of the hybrid poulations. It is suggested that fitness of structural heterozygotes in nature is not strongly aPfected as has been inferred from laboratory experiments. The results of this study are discussed in context together with the role of hybrid zones in chromosomal speciation in Mus domesticus.  相似文献   

20.
Various models purporting to explain natural hybrid zones make different assumptions about the fitness of hybrids. One class of models assumes that hybrids have intrinsically low fitness due to genetic incompatibilities, whereas other models allow hybrid fitness to vary across natural environments. We used the intrinsic rate of increase to assess lifetime fitness of hybrids between two species of montane plants Ipomopsis aggregata and Ipomopsis tenuituba planted as seed into multiple field environments. Because fitness is predicted to depend upon genetic composition of the hybrids, we included F1 hybrids, F2 hybrids, and backcrosses in our field tests. The F2 hybrids had female fitness as high, or higher, than expected under an additive model of fitness. These results run counter to any model of hybrid zone dynamics that relies solely on intrinsic nuclear genetic incompatibilities. Instead, we found that selection was environmentally dependent. In this hybrid zone, cytoplasmic effects and genotype-by-environment interactions appear more important in lowering hybrid fitness than do intrinsic genomic incompatibilities between nuclear genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号