首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal-catalyzed oxidation of proteins has been implicated in a variety of biological processes, particularly in the marking of proteins for subsequent proteolytic degradation. The metal-catalyzed oxidation of bacterial glutamine synthetase causes conformational, covalent, and functional alterations in the protein. To understand the structural basis of the functional changes, the time course of oxidative modification of glutamine synthetase was studied utilizing a nonenzymic model oxidation system consisting of ascorbate, oxygen, and iron. The structural modifications induced included: decreased thermal stability; weakening of subunit interactions; decrease in isoelectric point; introduction of carbonyl groups into amino acid side chains; and loss of two histidine residues. These changes did not denature the protein, but instead induced relatively subtle changes. Indeed, even the most extensively modified protein had a sedimentation velocity which was identical to that of the native enzyme. Comparison of the time courses of the structural and functional changes established that: (i) Loss of the metal binding site and of catalytic activity occurred with loss of one histidine per subunit; (ii) increased susceptibility to proteolysis occurred with loss of two histidine residues per subunit. Thus, oxidation at one site suffices to inactivate the enzyme, but two sites must be modified to induce susceptibility to proteolysis. The limited and specific changes induced by metal-catalyzed oxidation are consistent with a site-specific free radical mechanism.  相似文献   

2.
Several mixed-function oxidation systems catalyze inactivation of Escherichia coli glutamine synthetase and other key metabolic enzymes. In the presence of NADPH and molecular oxygen, highly purified preparations of cytochrome P-450 reductase and cytochrome P-450 (isozyme 2) from rabbit liver microsomes catalyze enzyme inactivation. The inactivation reaction is stimulated by Fe(III) or Cu(II) and is inhibited by catalase, Mn(II), Zn(II), histidine, and the metal chelators o-phenanthroline and EDTA. The inactivation of glutamine synthetase is highly specific and involves the oxidative modification of a histidine in each glutamine synthetase subunit and the generation of a carbonyl derivative of the protein which forms a stable hydrazone when treated with 2,4-dinitrophenylhydrazine. We have proposed that the mixed-function oxidation system (the cytochrome P-450 system) produces Fe(II) and H2O2 which react at the metal binding site on the glutamine synthetase to generate an activated oxygen species which oxidizes a nearby susceptible histidine. This thesis is supported by the fact that (a) Mn(II) and Zn(II) inhibit inactivation and also interfere with the reduction of Fe(III) to Fe(II) by the P-450 system; (b) Fe(II) and H2O2 (anaerobically), in the absence of a P-450 system, catalyze glutamine synthetase inactivation; (c) inactivation is inhibited by catalase; and (d) hexobarbital, which stimulates the rate of H2O2 production by the P-450 system, stimulates the rate of glutamine synthetase inactivation. Moreover, inactivation of glutamine synthetase by the P-450 system does not require complex formation because inactivation occurs when the P-450 components and the glutamine synthetase are separated by a semipermeable membrane. Also, if endogenous catalase is inhibited by azide, rabbit liver microsomes catalyze the inactivation of glutamine synthetase.  相似文献   

3.
The first step in the proteolytic degradation of bacterial glutamine synthetase is a mixed function oxidation of one of the 16 histidine residues in the glutamine synthetase subunit (Levine, R.L. (1983) J. Biol. Chem. 258, 11823-11827). A model system, consisting of oxygen, a metal ion, and ascorbic acid, mimics the bacterial system in mediating the oxidative modification of glutamine synthetase. This model system was studied to gain an understanding of the mechanism of oxidation and of factors which control the susceptibility of the enzyme to oxidation. Availability of substrates and the extent of covalent modification of the enzyme (adenylylation) interact to modulate susceptibility of the enzyme to oxidation. This interaction provides the biochemical basis for physiologic regulation of intracellular proteolysis of glutamine synthetase. The oxidative modification requires hydrogen peroxide. While the reaction may involve Fenton chemistry, the participation of free radicals, superoxide anion, and singlet oxygen could not be demonstrated.  相似文献   

4.
A number of metal-catalyzed oxidation (MCO) systems mediate the oxidative inactivation of enzymes. This oxidation is accompanied by conversion of the side chains of some amino acid residues to carbonyl derivatives (for review, see Stadtman, E. R. (1986) Trends Biochem. Sci. 11, 11-12). To identify the amino acid residues which are sensitive to MCO oxidation, several enzymes/proteins and amino acid homopolymers were exposed to various MCO systems. The carbonyl groups which were formed were converted to their corresponding 3H-labeled hydroxy derivatives. After acid hydrolysis, the labeled free amino acids were separated by ion exchange chromatography. Each protein or polymer gave rise to several different labeled amino acids. The elution profiles of the labeled amino acids obtained from preparations of Escherichia coli glutamine synthetase which had been oxidized by MCO systems comprised of either Fe(II)/O2 or ascorbate/Fe(II)/O2 both in the presence and absence of EDTA were qualitatively the same. From a comparison of the elution profiles of labeled amino acids from various proteins with those obtained from homopolymers, it is evident that the side chains of histidine, arginine, lysine, and proline are particularly sensitive to oxidation by the MCO systems. This conclusion is supported also by direct amino acid analysis of acid hydrolysates which shows that the oxidation of glutamine synthetase, enolase, and phosphoglycerate kinase is associated with the loss of at least 1 histidine residue per subunit. From the results of studies with homopolymers, it is apparent that glutamic semialdehyde is a major product of both proline and arginine residues. In addition, hydroxyproline and unlabeled glutamic acid were identified among the hydrolysis products of oxidized poly-L-proline, and unlabeled aspartic acid was identified as a product of poly-L-histidine oxidation.  相似文献   

5.
When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incorporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogenously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+) together with ATP (or other nucleoside di- and triphosphates. After 40-60 h dialysis Fe3+ together with NADH (but not ATP) are required for glutamine synthetase inactivation. The results suggest that accelerated protein degradation in cells exposed to nitrogen-limited conditions reflects the differential destruction of some proteins, including aspartokinases I and III, in order to sustain the biosynthesis of others such as glutamine synthetase. The loss of glutamine synthetase activity in cell-free extracts is likely mediated in part by mixed-function oxidation systems and could represent a 'marking' step in protein turnover.  相似文献   

6.
When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged (a) by the incorporation of [14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, (b) by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incroporation of [14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and (c) by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogeneously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+ together with ATP (or other nucleoside di- and triphosphates. After 40–60 h dialysis Fe3+ together with NADH (but not ATP) are required for glutamine synthetase inactivation. The results suggest that accelerated protein degradation in cells exposed to nitrogen-limited conditions reflects the differential destruction of some proteins, including aspartokinases I and III, in order to sustain the biosynthesis of others such as glutamine synthetase. The loss of glutamine synthetase activity in cell-free extracts is likely mediated in part by mixed-function oxidation systems and could represent a ‘marking’ step in protein turnover.  相似文献   

7.
Summary Addition of benzyl viologen to a cell suspension of the aerobic bacterium Azotobacter chroococcum growing on nitrate resulted in a rapid loss of glutamine synthetase activity as assayed in situ. When a glutamine synthetase preparation which exhibited NADH-benzyl viologen oxidoreductase activity was incubated, under air, with NADH and benzyl viologen, glutamine synthetase was inactivated in a short period of time. This in-vitro inactivation process could be prevented in the presence of added catalase, thus indicating that hydrogen peroxide was involved in the process, and by EDTA, suggesting that metal ions are also involved. The characteristics of the benzyl viologen-dependent glutamine synthetase inactivation observed with externally added H2O2 and a preincubated sample are similar.Inhibition of glutamine synthetase inactivation by histidine suggests that hydroxyl radicals, or something with similar reactivity, is the inactivating agent. The fact that inactivation can also be catalyzed by a model system consisting of Fe2+ and H2O2 leads to the conclusion that hydroxyl radicals are most likely produced in a Fenton reaction in which hydrogen peroxide reacts with adventitious iron ions.Since A. chroococcum contained a high level of catalase it may be concluded that cellular compartmentation plays an important role in the in-vivo inactivation of glutamine synthetase.  相似文献   

8.
I S Krishnan  R D Dua 《FEBS letters》1985,185(2):267-271
Preliminary chemical modification studies indicated the presence of tyrosine, carboxyl, arginine, histidine and the absence of serine and sulfhydryl residues at or near the active site of Clostridium pasteurianum glutamine synthetase. The conditions for tyrosine modification with tetranitromethane were optimized. The inactivation kinetics follow pseudo-first-order kinetics with respect to enzyme and second order with respect to modifier per active site. There was no inactivation at pH 6.5 suggesting the absence of thiol oxidation. The synthetase and transferase reactions followed the same pattern of inactivation on enzyme modification and both were equally protected by glutamate plus ATP. Thus tyrosine residues are present at the active site of the enzyme and are essential for both transferase and synthetase activities.  相似文献   

9.
Instability of Bacillus subtilis glutamine synthetase in crude extracts was attributed to site-specific oxidation by a mixed-function oxidation, and not to limited proteolysis by intracellular serine proteases (ISP). The crude extract from B. subtilis KN2, which is deficient in three intracellular proteases, inactivated glutamine synthetase similarly to the wild-type strain extract. To understand the structural basis of the functional change, oxidative modification of B. subtilis glutamine synthetase was studied utilizing a model system consisting of ascorbate, oxygen, and iron salts. The inactivation reaction appeared to be first order with respect to the concentration of unmodified enzyme. The loss of catalytic activity was proportional to the weakening of subunit interactions. B. subtilis glutamine synthetase was protected from oxidative modification by either 5 mM Mn2+ or 5 mM Mn2+ plus 5 mM ATP, but not by Mg2+. The CD-spectra and electron microscopic data showed that oxidative modification induced relatively subtle changes in the dodecameric enzyme molecules, but did not denature the protein. These limited changes are consistent with a site-specific free radical mechanism occurring at the metal binding site of the enzyme. Analytical data of the inactivated enzyme showed that loss of catalytic activity occurred faster than the appearance of carbonyl groups in amino acid side chains of the protein. In B. subtilis glutamine synthetase, the catalytic activity was highly sensitive to minute deviations of conformation in the dodecameric molecules and these subtle changes in the molecules could be regarded as markers for susceptibility to proteolysis.  相似文献   

10.
A positive selection procedure has been devised for isolating mutant strains of Salmonella typhimurium with altered glutamine synthetase activity. Mutants are derived from a histidine auxotroph by selecting for ability to grow on D-histidine as the sole histidine source. We hypothesize that the phenotype may be based on a regulatory increase in the activities of the D-histidine racemizing enzymes, but this has not been established. Spontaneous glutamine-requiring mutants isolated by the above selection procedure have two types of alterations in glutamine synthetase activity. Some have less than 10% of parent activity. Others have significant glutamine synthetase activity, but the enzyme have an altered response to divalent cations. Activity in mutants of the second type mimics that of highly adenylylated wild-type enzyme, which is believed to be in-active in vivo. Glutamine synthetase from one such mutant is more heat labile than wild-type enzyme, indicating that it is structurally altered. Mutations in all strains are probably in the glutamine synthetase structural gene (glnA). They are closely linked on the Salmonella chromosome and lie at about min 125. The mutants have normal glutamate dehydrogenase activity.  相似文献   

11.
Monoraphidium braunii glutamine synthetase is inactivated by several mixed-function oxidation systems. Inactivation requires oxygen and a metal cation as it does not take place under anaerobic conditions or in the presence of EDTA. Glutamine synthetase can be protected against that inactivation by peroxidase and catalase but not by superoxide dismutase indicating that hydrogen peroxide is involved in the process, although hydrogen peroxide is not itself effective. The oxidative modification of glutamine synthetase renders the protein more sensitive to temperature and susceptible to proteolytic attack. This has been demonstrated by measuring by quantitative immunoelectrophoresis the levels of glutamine synthetase antigen, in enzymatic preparations treated with different oxidation systems. Besides, immunoblotting of crude extracts in the presence of mixed-function oxidation systems shows the disappearance of material cross-reacting with anti-glutamine synthetase antibodies. Other results show that glutamine synthetase from Chlamydomonas reinhardtii could be subjected to the same kind of oxidative inactivation. The possible regulatory role of oxidative modification of glutamine synthetase in green algae is discussed.  相似文献   

12.
The glnD mutation of Klebsiella aerogenes is cotransducible by phage P1 with pan (requirement for pantothenate) and leads to a loss of uridylytransferase and uridylyl-removing enzyme, components of the glutamine synthetase adenylylation system. This defect results in an inability to deadenylylate glutamine synthetase rapidly and in a requirement for glutamine for normal growth. Suppression of the glnD mutation are located at the glutamine synthetase structural gene glnA.  相似文献   

13.
The P(II) protein from Rhodospirillum rubrum was fused with a histidine tag, overexpressed in Escherichia coli, and purified by Ni(2+)-chelating chromatography. The uridylylated form of the P(II) protein could be generated in E. coli. The effects on the regulation of glutamine synthetase by P(II), P(II)-UMP, glutamine, and alpha-ketoglutarate were studied in extracts from R. rubrum grown under different conditions. P(II) and glutamine were shown to stimulate the ATP-dependent inactivation (adenylylation) of glutamine synthetase, which could be totally inhibited by alpha-ketoglutarate. Deadenylylation (activation) of glutamine synthetase required phosphate, but none of the effectors studied had any major effect, which is different from their role in the E. coli system. In addition, deadenylylation was found to be much slower than adenylylation under the conditions investigated.  相似文献   

14.
The presence of two cysteine residues per each six monomers comprising the oligomer of Chlorella glutamine synthetase (E.C.6.3.1.2) is demonstrated using homogenous enzyme preparation. p-Chloromercuribenzoate (p-CMB) is found to inhibit glutamine synthetase activity, the degree of inhibition depending on the inhibitor concentration. The following enzyme reactivation by dithiotreitol (10(-2) M) was observed only when the enzyme was inactivated with 10(-5) M p-CMB under 15 min. preincubation. Preincubation of the enzyme with 10(-4) M p-CMB for 45 min. did not result in its reactivation. Gel filtration of glutamine synthetase treated with 10(-4) M p-CMB has revealed the dissociation of the enzyme into inactive monomers. Incubation of glutamine synthetase with p-CMB at various pH values, incubation after pre-treatment with urea and experiments with HgCl2 indicate the presence of free and masked inside the globula SH-groups in the enzyme molecule. Competitive character of the enzyme inhibition with p-CMB with respect to ATP indicates that SH-groups of the active site participate in the ATP binding, probably, as Mg-ATP or Mn-ATP complexes. Data on the estimation of ionization constant of glutamate-binding group and experiments on the effect of histidine photooxidation on the enzyme activity indicate the presence of histidine residue in the enzyme active site, which participates in glutamate binding.  相似文献   

15.
The relationships of five feedback inhibitors for the Bacillus licheniformis glutamine synthetase were investigated. The inhibitors were distinguishable by differences in their competitive relationship for the substrates of the enzyme. Mixtures of l-glutamine and adenosine-5'-monophosphate (AMP) or histidine and AMP caused synergistic inhibition of glutamine synthesis. Histidine, alanine, and glycine acted antagonistically toward the l-glutamine inhibition. Alanine acted antagonistically toward the glycine and histidine inhibitions. Independence of inhibitory action was observed with the other pairs of effectors. Possible mechanisms by which the inhibitors may interact to control glutamine synthesis are discussed. The low rate of catalysis of the glutamyl transfer reaction by the B. licheniformis glutamine synthetase can be attributed to the fact that l-glutamine serves both as a substrate and an inhibitor for the enzyme. Effectors which act antagonistically toward the l-glutamine inhibition stimulated glutamotransferase activity. The stimulation was not observed when d-glutamine was used as substrate for the glutamyl transfer reaction.  相似文献   

16.
Mixed-function oxidation of Escherichia coli glutamine synthetase has previously been suggested to mark the enzyme for intracellular degradation, and in vitro studies have demonstrated that oxidation renders the enzyme susceptible to proteolytic attack. In this study, the susceptibility of glutamine synthetase to degradation by purified proteases has been compared with the rate of degradation after microinjection into hepatoma cells. Upon exposure to an ascorbate mixed-function oxidation system the enzyme rapidly loses most of its activity, but further oxidation is required to cause susceptibility to extensive proteolytic attack either by a high-molecular-weight liver cysteine proteinase or by trypsin. The rate of degradation of biosynthetically 14C-labeled native and oxidized glutamine synthetase preparations after injection into hepatoma cells parallels their susceptibility to proteolysis in vitro. Native enzyme preparations and enzyme oxidatively inactivated, but not susceptible to extensive degradation by purified proteases, had similar intracellular half-lives; however, oxidized enzyme preparations that were susceptible to proteolytic breakdown in vitro were degraded almost ten times faster than the native enzyme within the growing hepatoma cells. These results suggest that the same features of the oxidized enzyme that render it susceptible to proteolysis in vitro are also recognized by the intracellular degradation system. In addition, they show that loss of enzyme activity does not necessarily imply decreased metabolic stability.  相似文献   

17.
Role of plasma membrane transport in hepatic glutamine metabolism   总被引:6,自引:0,他引:6  
In livers of fed rats and in perfused livers supplied with a physiological portal glutamine concentration of 0.6 mM, the mitochondrial and cytosolic glutamine concentrations are 20 mM and 7 mM, respectively, thus, the mitochondrial/cytosolic glutamine concentration gradient is 2-3. Uptake and release of glutamine by periportal and perivenous hepatocytes occurs predominantly by an Na+-dependent transport system (so-called system 'N'). Histidine in near-physiological concentrations inhibits both glutamine uptake by periportal hepatocytes and its release by perivenous hepatocytes. This is not due to an inhibition of glutamine-metabolizing enzymes by histidine or its metabolites. With physiological portal glutamine concentrations (0.6 mM), stimulation of glutaminase flux or of glutamine transaminase flux is followed by a decrease of hepatic glutamine levels to about 80% or 30%, respectively, glutamine levels are further decreased to 50% or 20% in the presence of histidine. When glutamine is synthesized endogenously (no glutamine added), the histidine-induced inhibition of glutamine release is paralleled by a 210% increase of the hepatic tissue level of glutamine. In experiments with and without methionine sulfoximine and in the absence of added glutamine, the glutamine content in the small perivenous hepatocyte population containing glutamine synthetase is estimated to be about 3.5 mumol/g wet weight and that in the periportal hepatocytes as low as 0.1 mumol/g wet weight. In contrast to the prevailing view, it is concluded that glutamine transport across the plasma membrane of hepatocytes is a potential regulatory site in glutamine degradation and synthesis, especially under the influence of effectors like histidine.  相似文献   

18.
An analysis of the covalent structure of bovine brain glutamine synthetase has been initiated. Cyanogen bromide and tryptic digests have yielded peptides accounting for most of the polypeptide subunit, and sequence analysis has placed in order over half of the amino acids within these peptides. The amino terminus is acetylated and has the following partial sequence: Ac(H, S3, A2, T)-L-B-K-G-I-K-Z-V-Y-M. The carboxyl-terminal sequence is: A-L-P-Q-G-D-K-V-Q-A-M. The peptides isolated from bovine glutamine synthetase show a high degree of homology with peptides isolated from ovine and porcine brain glutamine synthetases. In contrast to the sequence homologies of the proteins from eukaryotic sources, there are no obvious amino acid sequence homologies between bovine brain glutamine synthetase and any prokaryotic glutamine synthetase. Bovine brain glutamine synthetase is inactivated by phenylglyoxal and N-ethylmaleimide. In both cases catalytic activity is protected by the presence of ATP, suggesting the presence of arginine and cysteine residues at or near the ATP binding site.  相似文献   

19.
A soluble Escherichia coli protease has been identified and purified to homogeneity. The protease cleaves glutamine synthetase which has been modified by mixed function oxidation; native glutamine synthetase is not a substrate. Using [14C]glutamine synthetase as a substrate (prepared by growing E. coli on 14C-labeled amino acids), protease activity was assayed by determining the release of trichloroacetic acid-soluble material. The pure protease cleaves glutamine synthetase near the carboxyl terminus yielding 4,500 and 47,000 Mr products. The characteristics of this enzyme distinguish it from proteases previously purified from E. coli. These characteristics include a molecular weight of 75,000, alkaline pH optimum, lack of inhibition by serine protease inhibitors, and the ability to degrade insulin and casein. Oxidation of glutamine synthetase and other enzymes can be catalyzed by a variety of mixed function oxidase systems from bacterial and mammalian sources. Mixed function oxidation may be a "signal" or "marker" which consigns a protein for proteolytic degradation. Susceptibility to oxidation is subject to metabolic regulation, thereby providing control of proteolytic turnover. Isolation of a protease specific for modified glutamine synthetase provides the enzymatic basis for the specificity of this scheme.  相似文献   

20.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号