首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of Neuropeptide Y (NPY) in the pathophysiology of mood disorders has been suggested by clinical and preclinical evidence. NPY Y1 and Y2 receptors have been proposed to mediate the NPY modulation of stress responses and anxiety related behaviors. To further investigate the role of Y2 receptors in anxiety we studied the effect of BIIE0246, a selective Y2 receptor antagonist, in the elevated plus-maze test. Rats treated with 1.0 nmol BIIE0246 showed an increase in the time spent on the open arm of the maze. In addition, to study the effects of the Y2 antagonism on NPY protein level, NPY-like immunoreactivity was measured in different brain regions following treatment with BIIE0246, but no statistically significant effects were observed. These results suggest that BIIE0246 has an anxiolytic-like profile in the elevated plus-maze.  相似文献   

2.
Highly potent and selective small molecule neuropeptide Y Y2 receptor antagonists are reported. The systematic SAR exploration of a hit molecule N-(4-ethoxyphenyl)-4-[hydroxy(diphenyl)methyl]piperidine-1-carbothioamide, identified from HTS, led to the discovery of highly potent NPY Y2 antagonists 16 (CYM 9484) and 54 (CYM 9552) with IC(50) values of 19 nM and 12 nM respectively.  相似文献   

3.
The structurally related peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP) are endogenous agonists of the NPY receptor (YR) family, which in humans comprises four functionally expressed subtypes, designated Y1R, Y2R, Y4R and Y5R. Nonpeptide antagonists with high affinity and selectivity have been described for the Y1R, Y2R and Y5R, but such compounds are still lacking for the Y4R. In this work, the structures of the high affinity selective (R)-argininamide-type Y1R antagonists BIBP3226 and BIBO3304 were linked via the guanidine or urea moieties to give homo-dimeric argininamides with linker lengths ranging from 31 to 41 atoms. Interestingly, the twin compounds proved to be by far less selective for the Y1R than the R-configured monovalent parent compounds. The decrease in selectivity ratio was most pronounced for Y1R versus Y4R subtype, resulting in comparable affinities of bivalent ligands for Y1R and Y4R (e.g. UR-MK177 ((R,R)-49): Ki = 230 nM (Y1R) and 290 nM (Y4R)). With a Ki value of 130 nM and a Kb value of 20 nM, UR-MK188 ((R,R)-51) was superior to all Y4R antagonists known to date. The S,S-configured optical antipodes of UR-MK177 and UR-MK188 (UR-MEK381 ((S,S)-49) and UR-MEK388 ((S,S)-51)) were synthesized to investigate the stereochemical discrimination by the different receptor subtypes. Whereas preference for R,R-configured argininamides was characteristic of the Y1R, stereochemical discrimination by the Y4R was not observed. This may pave the way to selective Y4R antagonists.  相似文献   

4.
A novel small molecule NPY Y2 antagonist (3) identified from high throughput screening is described. A subsequent SAR study and optimisation programme based around this molecule is also described, leading to the identification of potent and soluble pyridyl analogue 36.  相似文献   

5.
Analogues of BIBP 3226, (R)-N(alpha)-diphenylacetyl-N-(4-hydroxybenzyl)argininamide, were synthesized and investigated for Y1 antagonism (Ca2+-assay, HEL cells) and binding on Y1, Y2 and Y5 receptors. Replacing the benzylamino by a tetrahydrobenzazepinyl group preserves most of the Y1 activity. Combination with a N(G)-phenylpropyl arginine and a N(alpha)-p-biphenylylacetyl moiety shifted the NPY receptor selectivity towards Y5.  相似文献   

6.
Novel imidazoline derivatives were discovered to be potent neuropeptide Y Y5 receptor antagonists. High-throughput screening of Merck sample collections against the human Y5 receptor resulted in the identification of 2,4,4-triphenylimidazoline (1), which had an IC50 of 54 nM. Subsequent optimization led to the identification of several potent derivatives.  相似文献   

7.
A novel series of imidazole-based small molecule antagonists of the melanocortin 4 receptor (MC4-R) is reported. Members of this series have been identified, which exhibit sub-micromolar binding affinity for the MC4-R, functional potency <100nM, and good oral exposure in rat. Antagonists of the MC4-R are potentially useful in the therapeutic treatment of involuntary weight loss due to advanced age or disease (e.g. cancer or AIDS), an area of large, unmet medical need.  相似文献   

8.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

9.
A series of substituted 4-alkoxy-2-aminopyridines 2, which were formally derived from neuropeptide Y1 antagonist 1 by replacing the morpholino portion with alkoxy groups, were synthesized and evaluated as neuropeptide Y Y1 receptor antagonists. Primary structure-activity relationships and identification of potent 4-alkoxy derivatives are described.  相似文献   

10.
Melanocortin receptor 4 (MC-4R) is involved in the regulation of energy balance and body weight, and recognizes alpha-, beta-, and gamma-melanocyte stimulating hormones (alpha-, beta-, gamma-MSH). In the search for compounds that regulate food intake and body weight, two synthetic lactam-derivative ligands of alpha-MSH were discovered, MTII and SHU9119. MTII is an agonist and reduces food intake in rats, whereas SHU9119 is an antagonist, and increases food intake and body weight in rats. MTII and SHU9119 are nonselective compounds to MC-4R. To enhance the potency and selectivity at the human MC-4R (hMC-4R), we recently synthesized analogs of SHU9119 (M. A. Bednarek, T. MacNeil, R. N. Kalyani, R. Tang, Van der L. H. T. Ploeg, and D. H. Weinberg, Journal of Medicinal Chemistry, 2001, Vol. 44, pp. 401-409), wherein compound 1 was the most selective for hMC-4R. Replacement of D-Nal by L-Nal in compound 1 made compound 2 weakly active. Comparison of the structures by NMR and molecular modeling of compounds 1 and 2 vs SHU9119 and MTII indicated that, even though they existed as an average of several conformations in solution, there were distinctions in their structures. The gamma-methylene protons of Arg in compound 1 were nonequivalent and shielded probably by the aromatic ring of Nal. The NHi-NHi+1 NOE cross peaks and the temperature coefficients of the amide protons around the "essential core" Nal/Phe7-Arg8-Trp9, required for high affinity and high selectivity at hMC-4R, were indicative of a possible turn structure for these compounds but with differences in their NOE strengths and temperature coefficient values. Molecular modeling of these compounds based on their NMR data showed that the essential core appeared as a "V" shape with two different orientations, one for compound 1 and some of the conformers of SHU9119 and MTII, and the other for compound 2 and some other conformers of SHU9119 and MTII. The remaining conformers of SHU9119 and MTII, which did not map to compound 1 or 2, suggested that they were outside of the hMC-4R binding envelop. These observations may lead to conjectures as to why compound 1 is highly active and selective toward hMC-4R.  相似文献   

11.
The receptor-linked internalization of [125I] human neuropeptide Y (NPY) in Chinese hamster ovary (CHO) cells expressing the guinea-pig Y1 receptors or in human endometrial carcinoma-1B (Hec-1B) cells expressing the human Y5 receptor, as well as the receptor-linked internalization of human pancreatic polypeptide (hPP) receptor expressed in CHO cells, is selectively inhibited by low molarities of the Li+ cation. The Na+ and K+ cations decreased the receptor-linked internalization of agonist peptides only at high molar inputs, and largely in proportion to the reduction of cell surface binding of Y ligand peptides, dependent on ion concentration and the type of Y receptor examined. With particulates isolated from disrupted cells, there was no preferential inhibition by Li+ relative to Na+ in the binding of type-specific ligand peptides to Y receptors of any type. The observed difference could be connected to the known ability of Li+ to modify active conformations of signal transducers, which may also directly or indirectly affect the internalization motors. The decrease in the rate of Y receptor internalization by Li+ also points to a possible alteration of Y receptor signaling in vivo by lithium at acute therapeutically employed dose levels.  相似文献   

12.
A series of benzimidazoles (4) was synthesized and evaluated in vitro as potent and selective NPY Y1 receptor antagonists. Substitution of the piperidine nitrogen of 4 with appropriate R groups resulted in compounds with more than 80-fold higher affinity at the Y receptor compared to the parent compound 5 (R = H). The most potent benzimidazole in this series was 21 (Ki = 0.052 nM).  相似文献   

13.
Melanocortins are known to be involved in the inhibition of food intake and energy metabolism. Acute and chronic intracerebroventricular administration of several different analogues of alpha-MSH, such as alpha-MSH, NDP-MSH, alpha-MSH-ND, [Gln(6)]alpha-MSH-ND, and [Lys(6)]alpha-MSH-ND, which were substituted in the position of His(6) with Gln and Lys, and cyclic16k-MSH to C57J/BL6 mice resulted in a significant inhibition of both time course food intake and body weight gain, compared to the saline-administered control. However, [Gln(6)]alpha-MSH-ND(6-10), the truncated form of [Gln(6)]alpha-MSH-ND, had no inhibitory effects on food intake. In situ hybridization analysis revealed that the expression levels of AGRP and NPY in the hypothalamus were significantly and rapidly diminished while POMC expression was strongly induced by [Gln(6)]alpha-MSH-ND. Administration of JKC-363, a selective MC4R-specific antagonist, coupled with [Gln(6)]alpha-MSH-ND, specifically reversed the [Gln(6)]alpha-MSH-ND-induced inhibition of food intake, but also reversed the hypothalamic expression levels of neuropeptides such as AGRP, NPY, MCH, and POMC, which suggests [Gln(6)]alpha-MSH-ND can function as a selective MC4R agonist.  相似文献   

14.

Background  

The melanocortin (MC) receptors have a key role in regulating body weight and pigmentation. They belong to the rhodopsin family of G protein-coupled receptors (GPCRs). The purpose of this study was to identify ancestral MC receptors in agnathan, river lamprey.  相似文献   

15.
Aminoglycoside-mediated read-through of stop codons was recently demonstrated for a variety of diseases in vitro and in vivo. About 30 percent of human genetic diseases are the consequence of nonsense mutations. Nonsense mutations in obesity-associated genes like the melanocortin 4 receptor (MC4R), expressed in the hypothalamus, show the impact of premature stop codons on energy homeostasis. Therefore, the MC4R could be a potential pharmaceutical target for obesity treatment and targeting MC4R stop mutations could serve as proof of principle for nonsense mutations in genes expressed in the brain. We investigated four naturally occurring nonsense mutations in the MC4R (W16X, Y35X, E61X, Q307X) located at different positions in the receptor for aminoglycoside-mediated functional rescue in vitro. We determined localization and amount of full-length protein before and after aminoglycoside treatment by fluorescence microscopy, cell surface and total enzyme linked immunosorbent assay (ELISA). Signal transduction properties were analyzed by cyclic adenosine monophosphate (cAMP) assays after transient transfection of MC4R wild type and mutant receptors into COS-7 cells. Functional rescue of stop mutations in the MC4R is dependent on: (i) triplet sequence of the stop codon, (ii) surrounding sequence, (iii) location within the receptor, (iv) applied aminoglycoside and ligand. Functional rescue was possible for W16X, Y35X (N-terminus), less successful for Q307X (C-terminus) and barely feasible for E61X (first transmembrane domain). Restoration of full-length proteins by PTC124 could not be confirmed. Future pharmaceutical applications must consider the potency of aminoglycosides to restore receptor function as well as the ability to pass the blood-brain barrier.  相似文献   

16.
A novel series of cyclohexanamine derivatives was designed and synthesized as potent and selective human neuropeptide Y Y1 receptor antagonists. Modification of high-throughput screening hit compound 1 resulted in the identification of compound 3i, which displays potent Y1 activity and good selectivity towards hERG K+ channel and serotonin transporter.  相似文献   

17.
Fang Q  Guo J  He F  Peng YL  Chang M  Wang R 《Peptides》2006,27(9):2207-2213
BIBP3226 {(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide} was recently shown to display relatively high affinities for neuropeptide FF (NPFF) receptors and exhibit antagonist activities towards NPFF receptors in vitro. The present study was undertaken to investigate the antagonistic effects of BIBP3226 on several in vivo pharmacologic profiles induced by exogenous NPFF and NPVF. (1) BIBP3226 (5 nmol) injected into the third ventricle completely antagonized the hypothermic effects of NPFF (30 nmol) and NPVF (30 nmol) after cerebral administration in mice; (2) BIBP3226 (5 nmol, i.c.v.) prevented the anti-morphine actions of NPFF (10 nmol, i.c.v.) in the mouse tail-flick assay; (3) in urethane-anaesthetized rats, both NPFF (200 nmol/kg, i.v.) and NPVF (200 nmol/kg, i.v.) increased the mean arterial blood pressure, which were significantly reduced by pretreatment with BIBP3226 (500 nmol/kg, i.v.). Collectively, these data suggest that BIBP3226, a mixed antagonist of NPY Y1 and NPFF receptors, shows in vivo antagonistic effects on NPFF receptors. In addition, it seems to be clear that the in vivo pharmacological profiles of NPFF are mediated directly by NPFF receptors.  相似文献   

18.
The synthesis and evaluation of a series of 2,4-diaminopyridine-based neuropeptide Y Y1 (NPY Y1) receptor antagonists are described. Compound 1 was previously reported by our laboratory to be a potent and selective Y1 antagonist; however, 1 was also found to have potent hERG inhibitory activity. The main focus of this communication is structure–activity relationship development aimed at eliminating the hERG activity of 1. This resulted in the identification of compound 3d as a potent and selective NPY Y1 antagonist with reduced hERG liability.  相似文献   

19.
The design of non-peptide, Y1-selective antagonists of neuropeptide Y (NPY) as pharmacological tools is in progress and is increasingly important as therapeutic applications are expected. Starting from the potent histamine H2 agonist and weak NPY Y1 antagonist arpromidine, 16 imidazolylpropylguanidine derivatives were synthesized and tested for Y1 antagonistic activity (inhibition of NPY-stimulated Ca2+ increase in human erythroleukemic cells), where the pheniramine-like moiety of arpromidine was replaced with 2-pyridylaminoalkyl, benzyl-(2-pyridyl)aminoalkyl, and phenyl-(2-pyridyl)alkylaminoalkyl partial structures derived from mepyramine. The pA2 values of the most active compounds are in the range of 6.2-6.5. Quantitative structure-activity relationships (QSAR) were investigated by fragment regression analysis. Results indicate that a tetramethylene spacer between the guanidino group and the amino nitrogen is optimal. For an at least moderate degree of Y1 antagonistic activity, a second benzyl or phenyl group must be present in addition to the 2-pyridyl ring. At this second group, hydrophobic substituents such as 3,4-di-CI and 4-Br further enhance Y1 antagonism. The most active derivative additionally bears a 5-Br substituent at the 2-pyridyl moiety. Structure-activity relationships suggest that the compounds might be able to partially imitate the role of NPY when interacting with Y1 receptors and thus behave as moderate non-peptide NPY Y1 antagonists.  相似文献   

20.
Selective NPY analogues are potent tools for tumour targeting. Their Y1‐receptors are significantly over‐expressed in human breast tumours, whereas normal breast tissue only expresses Y2‐receptors. The endogenous peptide consists of 36 amino acids, whereas smaller peptides are preferred because of better labelling efficiencies. As Y1‐receptor agonists enhance the tumour to background ratio compared to Y1‐receptor antagonists, we were interested in the development of Y1‐receptor selective agonists. We designed 19 peptides containing the C‐terminus of NPY (28–36) with several modifications. By using competition receptor binding affinity assays, we identified three NPY analogues with high Y1‐receptor affinity and selectivity. Metabolic stability studies in human blood plasma of the N‐terminally 5(6)‐carboxyfluorescein (CF) labelled peptides resulted in half‐lives of several hours. Furthermore, the degradation pattern revealed proteolytic degradation of the peptides by amino peptidases. The most promising peptide was further investigated in receptor activation and internalization studies. Signal transduction assays revealed clear agonistic properties, which could be confirmed by microscopy studies that showed clear Y1‐receptor internalization. For the first time, here we show the design and characterization of a small Y1‐receptor selective agonist. This agonist might be a useful novel ligand for NPY‐mediated tumour diagnostics and therapeutics. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号