首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The mechanism of partial agonism at N-methyl-D-aspartate receptors is an unresolved issue, especially with respect to the role of protein dynamics. We have performed multiple molecular dynamics simulations (7 x 20 ns) to examine the behavior of the ligand-binding core of the NR1 subunit with a series of ligands. Our results show that water plays an important role in stabilizing different conformations of the core and how a closed cleft conformation of the protein might be stabilized in the absence of ligands. In the case of ligand-bound simulations with both full and partial agonists, we observed that ligands within the binding cleft may undergo distinct conformational changes, without grossly influencing the degree of cleft closure within the ligand-binding domain. In agreement with recently published crystallographic data, we also observe similar changes in backbone torsions corresponding to the hinge region between the two lobes for the partial agonist, D-cycloserine. This observation rationalizes the classification of D-cycloserine as a partial agonist and should provide a basis with which to predict partial agonism in this class of receptor by analyzing the behavior of these torsions with other potential ligands.  相似文献   

2.
Fluorescence resonance energy transfer was used to determine the structural changes in the extracellular ligand-binding segment in a functional glutamate receptor that contains the ligand-binding, transmembrane, and C-terminal segments. These studies indicate that the structural changes previously reported for the isolated ligand-binding domain due to the binding of partial and full agonists are also observed in this functional receptor, thus validating the detailed structure-function relationships that have been previously developed based on the structure of the isolated ligand-binding domain. Additionally, these studies provide the first evidence that there are no significant changes in the extent of cleft closure between the activated and desensitized states of the glutamate bound form of the receptor consistent with the previous functional investigations, which suggest that desensitization is mediated primarily by changes in the interactions between subunits composing the receptor.  相似文献   

3.
Mendieta J  Ramírez G  Gago F 《Proteins》2001,44(4):460-469
Excitatory synaptic transmission is mediated by ionotropic glutamate receptors (iGluRs) through the induced transient opening of transmembrane ion channels. The three-dimensional structure of the extracellular ligand-binding core of iGluRs shares the overall features of bacterial periplasmic binding proteins (PBPs). In both families of proteins, the ligand-binding site is arranged in two domains separated by a cleft and connected by two peptide stretches. PBPs undergo a typical hinge motion of the two domains associated with ligand binding that leads to a conformational change from an open to a closed form. The common architecture suggests a similar closing mechanism in the ligand-binding core of iGluRs induced by the binding of specific agonists. Starting from the experimentally determined kainate-bound closed form of the S1S2 GluR2 construct, we have studied by means of molecular dynamics simulations the opening motion of the ligand-binding core in the presence and in the absence of both glutamate and kainate. Our results suggest that the opening/closing interdomain hinge motions are coupled to conformational changes in the insertion region of the transmembrane segments. These changes are triggered by the interaction of the agonists with the essential Glu 209 residue. A plausible mechanism for the coupling of agonist binding to channel gating is discussed.  相似文献   

4.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   

5.
In the present report, using vibrational spectroscopy we have probed the ligand-protein interactions for full agonists (glutamate and alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA)) and a partial agonist (kainate) in the isolated ligand-binding domain of the GluR2 subunit of the glutamate receptor. These studies indicate differences in the strength of the interactions of the alpha-carboxylates for the various agonists, with kainate having the strongest interactions and glutamate having the weakest. Additionally, the interactions at the alpha-amine group of the agonists have also been probed by studying the environment of the non-disulfide-bonded Cys-425, which is in close proximity to the alpha-amine group. These investigations suggest that the interactions at the alpha-amine group are stronger for full agonists such as glutamate and AMPA as evidenced by the increase in the hydrogen bond strength at Cys-425. Partial agonists such as kainate do not change the environment of Cys-425 relative to the apo form, suggesting weak interactions at the alpha-amine group of kainate. In addition to probing the ligand environment, we have also investigated the changes in the secondary structure of the protein. Results clearly indicate that full agonists such as glutamate and AMPA induce similar secondary structural changes that are different from those of the partial agonist kainate; thus, a spectroscopic signature is provided for identifying the functional consequences of a specific ligand binding to this protein.  相似文献   

6.
McFeeters RL  Oswald RE 《Biochemistry》2002,41(33):10472-10481
Ionotropic glutamate receptors play important roles in a variety of neuronal processes and have been implicated in multiple neurodegenerative diseases. The extracellular ligand-binding (S1S2) core of the GluR2 subtype can be expressed in bacteria as a soluble, monomeric protein with binding properties essentially identical to those of the intact receptor. The crystal structure of this protein has been determined in the presence and absence of various agonists and antagonists [Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. (1998) Nature 395, 913-917; Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181]. The protein consists of two lobes, with the S1 segment composing the majority of lobe 1 and the S2 segment composing most of lobe 2. A domain closure upon ligand binding has been postulated, but details of intradomain motions have not been investigated. In this paper, the backbone motions of the ligand-binding core of GluR2 bound to glutamate were studied using (15)N longitudinal (T1) and transverse (T2) relaxation measurements as well as [1H]-15N nuclear Overhauser effects at 500 and 600 MHz. Residues in the agonist-binding pocket exhibited two main classes of motion. Those contacting the alpha-substituents of the ligand glutamate exhibited minimal internal motion, while those contacting the gamma-constituents exhibited exchange dynamics, indicating two dynamically distinct portions of the binding pocket. Also, two residues in transdomain linkers between lobes 1 and 2 show exchange, lending new insight into the previously proposed domain closure hypothesis. Finally, concerted motion of helix F suggests a pathway for ligand dissociation without the necessity of domain reopening.  相似文献   

7.
Kubo M  Ito E 《Proteins》2004,56(3):411-419
Ionotropic glutamate receptors (iGluRs) are postsynaptic ion channels involved in excitatory neurotransmission. iGluRs play important roles in development and in forms of synaptic plasticity that underlie higher order processes such as learning and memory. Neurobiological and biochemical studies have long characterized iGluRs in detail. However, the structural basis for the function of iGluRs has not yet been investigated, because there is insufficient information about their three-dimensional structures. In 1998, a crystal structure called S1S2 lobes was first solved for the extracellular bilobed ligand-binding domain of the GluR2 subunit. Since then, the crystal structures for the S1S2 lobes both in the apo and in various liganded states have been reported, and recent biophysical studies have further elucidated the dynamic aspects of the structure of the S1S2 lobes. In this review, the dynamic structures of the S1S2 lobes and their ligands are summarized, and the importance of their structural flexibility and fluctuation is discussed in light of the mechanisms of ligand recognition, activation, and desensitization of the receptor.  相似文献   

8.
9.
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of the P helix. We have constructed homology models based on both alignments and evaluated them using 6 ns duration molecular dynamics simulations in a membrane-mimetic environment. One model, in which an insertion in GluR0 relative to KcsA is located in the loop between the M1 and P helices, is preferred on the basis of lower structural drift and maintenance of the P helix conformation during simulation. This model also exhibits inter-subunit salt bridges that help to stabilise the TM domain tetramer. During the simulation, concerted K(+) ion-water movement along the selectivity filter is observed, as is the case in simulations of KcsA. K(+) ion exit from the central cavity is associated with opening of the hydrophobic gate formed by the C-termini of the M2 helices. In the intact receptor the opening of this gate will be controlled by interactions with the extramembranous ligand-binding domains.  相似文献   

10.
In the post-Genome era, new concepts emerge about the growth regulation of uterine leiomyomata. Screening of leiomyoma and myometrial tissues with DNA arrays revealed numerous genes up-regulated in leiomyomata that were not known to be expressed in the human uterus. GluR2, a subunit of a ligand-gated cation channel, is up-regulated in leiomyomata relative to myometrium by 15- to 30-fold at the protein and mRNA level and is localized in endothelial cells. GluR2 pre-mRNA in leiomyoma and myometrial tissues is nearly 100% edited at the Q/R site, indicative of low Ca(2+) permeability of the ion channels. In spontaneous leiomyomata in women or leiomyomata induced in the guinea pig model, there is a likely synergism linking increased production of estradiol and all-trans retinoic acid with up-regulation of nuclear receptor PPARgamma and RXRalpha proteins to support tumor growth. GluR2 might be coupled to this synergism directly or via interleukin-17B, kinesin KIF5 or related genes also up-regulated in leiomyomata. GluR antagonists should be tested as inhibitors of leiomyoma growth.  相似文献   

11.
We have constructed a molecular model of the ligand-binding domain of the GABA(C) receptor, which is a member of the Cys-loop ligand-gated ion channel family. The extracellular domains of these receptors share similar sequence homology (20%) with Limnaea acetylcholine-binding protein for which an X-ray crystal structure is available. We used this structure as a template for homology modeling of the GABA(C) receptor extracellular domain using FUGUE and MODELLER software. FlexX was then used to dock GABA into the receptor ligand-binding site, resulting in three alternative energetically favorable orientations. Residues located no more than 5 A from the docked GABA were identified for each model; of these, three were found to be common to all models with 14 others present only in certain models. Using data from experimental studies, we propose that the most likely orientation of GABA is with its amine close to Y198, and its carboxylate close to R104. These studies have therefore provided a model of the ligand-binding domain, which will be useful for both GABA(C) and GABA(A) receptor studies, and have also yielded an experimentally testable hypothesis of the location of GABA in the binding pocket. [Figure: see text].  相似文献   

12.
13.
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled glutamate receptors that subserve a number of diverse functions in the central nervous system. The large extracellular amino-terminal domains (ATDs) of mGluRs are homologous to the periplasmic binding proteins in bacteria. In this study, a region in the ATD of the mGluR4 subtype of mGluR postulated to contain the ligand-binding pocket was explored by site-directed mutagenesis using a molecular model of the tertiary structure of the ATD as a guiding tool. Although the conversion of Arg(78), Ser(159), or Thr(182) to Ala did not affect the level of protein expression or cell-surface expression, all three mutations severely impaired the ability of the receptor to bind the agonist L-[(3)H]amino-4-phosphonobutyric acid. Mutation of other residues within or in close proximity to the proposed binding pocket produced either no effect (Ser(157) and Ser(160)) or a relatively modest effect (Ser(181)) on ligand affinity compared with the Arg(78), Ser(159), and Thr(182) mutations. Based on these experimental findings, together with information obtained from the model in which the glutamate analog L-serine O-phosphate (L-SOP) was "docked" into the binding pocket, we suggest that the hydroxyl groups on the side chains of Ser(159) and Thr(182) of mGluR4 form hydrogen bonds with the alpha-carboxyl and alpha-amino groups on L-SOP, respectively, whereas Arg(78) forms an electrostatic interaction with the acidic side chains of L-SOP or glutamate. The conservation of Arg(78), Ser(159), and Thr(182) in all members of the mGluR family indicates that these amino acids may be fundamental recognition motifs for the binding of agonists to this class of receptors.  相似文献   

14.
Valentine ER  Palmer AG 《Biochemistry》2005,44(9):3410-3417
Chemical shift changes and internal motions on microsecond-to-millisecond time scales of the S1S2 ligand-binding domain of the GluR2 ionotropic glutamate receptor have been studied by NMR spectroscopy in the presence of the agonists glutamic acid (glutamate), quisqualic acid (quisqualate), and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Although the crystal structures of the three agonist-bound forms of GluR2 S1S2 ligand-binding domain are very similar, chemical shift changes imply that AMPA-bound GluR2 S1S2 is conformationally distinct from glutamate- and quisqualate-bound forms of GluR2 S1S2. NMR spin relaxation measurements for backbone amide (15)N nuclei reveal that GluR2 S1S2 exhibits reduced chemical exchange line broadening, resulting from microsecond-to-millisecond conformational dynamics, in AMPA-bound compared to glutamate- and quisqualate-bound states. The largest changes in line broadening are observed for two regions of GluR2 S1S2: Val683 and the segment around Lys716-Cys718. The differences in binding affinity of these agonists do not explain the differences in microsecond-to-millisecond conformational dynamics because quisqualate and AMPA bind with similar affinities that are 10-fold greater than the affinity of glutamate. Differences in conformational mobility may reflect differences in the binding mode of AMPA in the GluR2 S1S2 active site compared to the other two ligands. The sites of conformational mobility in GluR2 S1S2 imply that subtle differences exist between the agonists glutamate, quisqualate, and AMPA in modulating glutamate receptor function.  相似文献   

15.
Agonist binding to glutamate receptor ion channels occurs within an extracellular domain (S1S2) that retains ligand affinity when expressed separately. S1S2 is homologous to periplasmic binding proteins, and it has been proposed that a Venus flytrap-style cleft closure triggers opening of glutamate receptor ion channels. Here we compare the kinetics of S1S2-agonist binding to those of the periplasmic binding proteins and show that the reaction involves an initial rapid association, followed by slower conformational changes that stabilize the complex: "docking" followed by "locking." The motion detected here reflects the mechanism by which the energy of glutamate binding is converted into protein conformational changes within S1S2 alone. In the intact channel, these load-free conformational changes are harnessed and possibly modified as the agonist binding reaction is used to drive channel opening and subsequent desensitization. Using mutagenesis, key residues in each step were identified, and their roles were interpreted in light of a published S1S2 crystal structure. In contrast to the Venus flytrap proposal, which focuses on motion between the two lobes as the readout for agonist binding, we argue that smaller, localized conformational rearrangements allow agonists to bridge the cleft, consistent with published hydrodynamic measurements.  相似文献   

16.
Molecular dynamics simulations of an atomic model of the transmembrane domain of the oncogenic ErbB2 receptor dimer embedded in an explicit dimyristoylphosphatidylcholine (DMPC) bilayer were performed for more than 4 ns. The oncogenic Glu mutation in the membrane spanning segment plays a major role in tyrosine kinase activity and receptor dimerization, and is thought to be partly responsible for the structure of the transmembrane domain of the active receptor. MD results show that the interactions between the two transmembrane helices are characteristic of a left-handed packing as previously demonstrated from in vacuo simulations. Moreover, MD results reveal the absence of persistent hydrogen bonds between the Glu side chains in a membrane environment, which raise the question of the ability for Glu alone to stabilize the TM domain of the ErbB2 receptor. Interestingly the formation of the alpha-pi motif in the two ErbB2 transmembrane helices confirms the concept of intrinsic sequence-induced conformational flexibility. From a careful analysis of our MD results, we suggest that the left-handed helix-helix packing could be the key to correctly orient the intracellular domain of the activated receptor dimer. The prediction of such interactions from computer simulations represents a new step towards the understanding of signaling mechanisms.  相似文献   

17.
RNA aptamers selected against the GluR2 glutamate receptor channel   总被引:1,自引:0,他引:1  
Huang Z  Pei W  Jayaseelan S  Shi H  Niu L 《Biochemistry》2007,46(44):12648-12655
The excessive activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, a subtype of glutamate ion channels, has been implicated in various neurological diseases such as cerebral ischemeia and amyotrophic lateral sclerosis. Inhibitors of AMPA receptors are drug candidates for potential treatment of these diseases. Using the systematic evolution of ligands by exponential enrichment (SELEX), we have selected a group of RNA aptamers against the recombinant GluR2Qflip AMPA receptor transiently expressed in HEK-293 (human embryonic kidney) cells. One of the aptamers, AN58, is shown to competitively inhibit the receptor. The nanomolar affinity of AN58 rivals that of NBQX (6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione), one of the best competitive inhibitors. Like NBQX, AN58 has the highest affinity for GluR2, the selection target, among all AMPA receptor subunits. However, AN58 has a higher selectivity for the GluR4 AMPA receptor subunit and remains potent even at pH = 6.8 (i.e., a clinically relevant acidic pH), as compared with NBQX. Furthermore, this RNA molecule possesses stable physical properties. Therefore, AN58 serves as a unique lead compound for developing water-soluble inhibitors with a nanomolar affinity for GluR2 AMPA receptors.  相似文献   

18.
The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors (iGluRs) mediates fast excitatory neurotransmission in the mammalian brain. Although the most N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain is suggested to play a role in the initial assembly of iGluR subunits, it is unclear how this domain is arranged and functions in intact iGluRs. Similarly, although recent crystallographic analyses indicate that the isolated ligand-binding lysine/arginine/ornithine-binding protein domain forms a 2-fold symmetric dimer, the subunit stoichiometry of intact iGluRs remains elusive. Here, we developed a new approach to address these issues. The LIVBP domain of the GluR1 subunit of AMPA receptors was replaced by leucine-zipper peptides designed to form stable symmetric dimers, trimers, tetramers, or pentamers. All these mutant GluR1s were expressed in human embryonic kidney 293 cells and were transported to the cell surface as well as wild type GluR1. Functional and biochemical analyses indicated that these oligomerizing peptides specifically controlled the formation of the expected number of subunits in a channel complex. However, the channel function was only restored by the tetramer-forming peptide. Although the purified LIVBP domain of GluR1 formed a dimmer in solution, a dimer-forming peptide could not restore the function of GluR1. Moreover, a cross-linking assay indicated that four LIVBP domains are located in proximity to each other. These results suggest that the function of the LIVBP domain is not simply to form initial dimers but to adopt a conformation compatible with the overall tetrameric arrangement of subunits in intact AMPA receptors.  相似文献   

19.
Mendieta J  Gago F  Ramírez G 《Biochemistry》2005,44(44):14470-14476
Guanine nucleotides behave as competitive antagonists at ionotropic glutamate receptors and show neuroprotective activity in different experimental excitotoxicity paradigms, both in vivo and in cultured cell preparations. Taking 5'-GMP as the reference nucleotide, we have tried to understand how these molecules interact with the agonist-binding site of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor. Using a crystallographic model of the ligand-binding core of the GluR2 receptor in complex with kainate, we have previously analyzed the structural changes associated to the binding of agonists to the receptor and suggested a mechanism for the coupling of agonist binding to channel gating. In the present investigation we used the structure of the apo form of the receptor to probe the primary interactions between GMP and GluR2 by means of an automated docking program. A targeted molecular dynamics (TMD) simulation procedure was subsequently used to force the closing of the protein and to study the rearrangement of the ligand and surrounding amino acids. The resulting structure provides a plausible model of the nucleotide-receptor complex. Indirect support for the validity of our approach was obtained when the same methodology was shown to yield structures of the kainate-GluR2 and 6,7-dinitroquinoxaline-2,3-dione (DNQX)-GluR2 complexes that were in very good agreement with the published crystallographic structures. Both the stacking interaction between the phenyl ring of Tyr73 and the purine ring of GMP and a salt bridge between the phosphate group of GMP and Arg108 in the S1 domain, together with several hydrogen bonds, are proposed to secure the anchoring of GMP to the agonist-binding site. Unlike conventional competitive antagonists, such as DNQX, occupancy of the site by GMP still allows receptor segments S1 and S2 to close tightly around GMP without interacting with the critical residue Glu209 that triggers channel opening. Thus, GMP appears to be rather a false agonist than a competitive antagonist. This fact and the nature of the energy barriers that stabilize GMP bound to the closed form of the receptor provide an explanation for the unusual behavior of some guanine nucleotides in ligand-displacement experiments.  相似文献   

20.
Kinetics of homomeric GluR6 glutamate receptor channels.   总被引:5,自引:1,他引:5       下载免费PDF全文
M Heckmann  J Bufler  C Franke    J Dudel 《Biophysical journal》1996,71(4):1743-1750
We studied the kinetics of the unedited version of rat GluR6 glutamate (glu) receptor channels, GluR6Q, in outside-out patches using a system for submillisecond solution exchange. Half-maximum activation of the channels was reached with approximately 0.5 microM glu. The maximum slope of the double-logarithmic plot of the peak current versus glu was approximately 1.3, indicating that at least two binding steps are necessary to open the channels. Currents in response to a pulse of 10 microM glu had a short rise time (10-90% of peak current) of approximately 220 microseconds at approximately 20 degrees C. The rise time increased with falling glu concentration, reaching approximately 6.0 ms with 10 microM glu. In the continued presence of glu, the channels desensitized, and this desensitization can be described with a single time constant of approximately 7.0 ms for a pulse of 10 microM glu. The steady-state current in response to a long pulse of 10 microM glu was below 1/280th of the peak current. The time constant of desensitization was found to be independent of concentration between 30.0 and 0.3 microM glu, but to be increased for lower concentrations. After a short pulse of 1 ms duration and 10 or 0.3 microM glu, currents decayed with a time constant of approximately 2.5 ms. Recovery from desensitization after a pulse took approximately 5 s, and the half-time of recovery was approximately 2.2 s. Continuous application of low concentrations of glutamate reduced the peak currents in response to a pulse of 10 microM glu markedly. Fifty percent response reduction was observed in the continuous presence of approximately 0.3 microM glu. Our results for homomeric GluR6 agree with a cyclical reaction scheme developed for completely desensitizing, glu-activated channels on crayfish muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号