首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
1. Quantifying how biological diversity is distributed in the landscape is one of the central themes of conservation ecology. For this purpose, landscape classifications are being intensively used in conservation planning and biodiversity management, although there is still little information about their efficacy. 2. I used data from 158 running water sites in Hungary to examine the contribution of six a priori established habitat types to regional level diversity of fish assemblages. Three community measures [species richness, diversity (Shannon, Simpson indices), assemblage composition] were examined at two assemblage levels (entire assemblage, the native assemblage). The relative role of non‐native species was quantified to examine their contribution to patterns in diversity in this strongly human influenced landscape. 3. Additive diversity partitioning revealed the primary importance of beta diversity (i.e. among‐site factors) to patterns in species richness. Landscape‐scale patterns in species richness were best explained by between‐habitat type (beta2: 41.2%), followed by within‐habitat type (beta1: 37.7%) and finally within‐site (alpha: 21.1%) diversity. Diversity indices showed patterns different from species richness, indicating the importance of relative abundance distributions on the results. Exclusion of non‐natives from the analysis gave similar results to the entire‐assemblage level analysis. 4. Canonical analysis of principal coordinates, complemented with indicator species analysis justified the separation of fish assemblages among the habitat types, although classification error was high. Multivariate dispersion, a measure of compositional beta diversity, showed significant differences among the habitat types. Contrary to species diversity (i.e. richness, diversity indices), patterns in compositional diversity were strongly influenced by the exclusion of non‐natives from the analyses. 5. This study is the first to quantify how running water habitat types contribute to fish diversity at the landscape scale and how non‐native species influence this pattern. These results on riverine fish assemblages support the hypothesis that environmental variability (i.e. the diversity of habitat types) is an indication of biodiversity and can be used in large‐scale conservation designs. The study emphasises the joint application of additive diversity partitioning and multivariate statistics when exploring the contribution of landscape components to the overall biodiversity of the landscape mosaic.  相似文献   

4.
Estuary restoration in Tampa Bay, Florida, United States, is an ongoing focus of natural resource managers because of pressure from an increasing coastal population, historic habitat loss, and restoration's importance to economic development, recreational activities, and fish habitat. A growing population can also limit future large‐scale restorations due to associations with cost and land availability. This limitation might be overcome by applying the habitat mosaic approach to restoration, which creates distinct habitat types at small spatial scales. This approach was applied to create three types of estuarine habitat, reconnected tidal creek, salt marsh, and tidal pond. The objectives of this study were to (1) initiate monitoring of a restored wetland mosaic and (2) determine how fish diversity and community structure vary among restored habitat types. Replicated sampling using a 3‐mm mesh seine was used to characterize the fish communities. Our results indicate that the habitat mosaic approach creates suitable habitat for a variety of fish species where 37% of fish species were captured in just one habitat type. In particular, the recreationally important Centropomus undecimalis (common snook) was more common in the mangrove‐lined creek and the non‐native Sarotherodon melanotheron (blackchin tilapia) was common in the tidal pond. Greater emphasis should be placed on applied restoration research to identify how habitat types within a larger restoration mosaic contribute to local species diversity and recreationally and commercially important fishes, while limiting non‐natives. This emphasis could reveal how restoration approaches can be modified to include habitat mosaics, maximizing their contribution to productive fish habitat.  相似文献   

5.
1. Human activities affect fish assemblages in a variety of ways. Large‐scale and long‐term disturbances such as in‐stream dredging and mining alter habitat and hydrodynamic characteristics within rivers which can, in turn, alter fish distribution. Habitat heterogeneity is decreased as the natural riffle–pool–run sequences are lost to continuous pools and, as a consequence, lotic species are displaced by lentic species, while generalist and invasive species displace native habitat specialists. Sediment and organic detritus accumulate in deep, dredged reaches and behind dams, disrupting nutrient flow and destroying critical habitat for habitat specialist species. 2. We used standard ecological metrics such as species richness and diversity, as well as stable isotope analysis of δ13C and δ15N, to quantify the differences in fish assemblages sampled by benthic trawls among dredged and undredged sites in the Allegheny River, Pennsylvania, U.S.A. 3. Using mixed‐effects models, we found that total catch, species richness and diversity were negatively correlated with depth (P < 0.05), while species richness, diversity and proportion of species in lithophilic (‘rock‐loving’) reproductive guilds were lower at dredged than at undredged sites (P < 0.05). 4. Principal components analysis and manova revealed that taxa such as darters in brood hider and substratum chooser reproductive guilds were predominantly associated with undredged sites along principal component axis 1 (PC1 and manova P < 0.05), while nest spawners such as catfish and open substratum spawners including suckers were more associated with dredged sites along PC2 (P < 0.05). 5. Stable isotope analysis of δ13C and δ15N revealed shifts from reliance on shallow water and benthic‐derived nutrients at undredged sites to reliance on phytoplankton and terrestrial detritus at deep‐water dredged sites. Relative trophic positions were also lower at dredged sites for many species; loss of benthic nutrient pathways associated with depth and dredging history is hypothesised. 6. The combination of ecological metrics and stable isotope analysis thus shows how anthropogenic habitat loss caused by gravel dredging can decrease benthic fish abundance and diversity, and that species in substratum‐specific reproductive guilds are at particular risk. The effects of dredging also manifest by altering resource use and nutrient pathways within food webs. Management and conservation decisions should therefore consider the protection of relatively shallow areas with suitable substratum for spawning for the protection of native fishes.  相似文献   

6.
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β‐diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large‐scale studies and has important implications for the aquatic conservation of the region.  相似文献   

7.
In highly impaired watersheds, it is critical to identify both areas with desirable habitat as conservation zones and impaired areas with the highest likelihood of improvement as restoration zones. We present how detailed riparian vegetation mapping can be used to prioritize conservation and restoration sites within a riparian and instream habitat restoration program targeting 3 native fish species on the San Rafael River, a desert river in southeastern Utah, United States. We classified vegetation using a combination of object‐based image analysis (OBIA) on high‐resolution (0.5 m), multispectral, satellite imagery with oblique aerial photography and field‐based data collection. The OBIA approach is objective, repeatable, and applicable to large areas. The overall accuracy of the classification was 80% (Cohen's κ = 0.77). We used this high‐resolution vegetation classification alongside existing data on habitat condition and aquatic species' distributions to identify reaches' conservation value and restoration potential to guide management actions. Specifically, cottonwood (Populus fremontii) and tamarisk (Tamarix ramosissima) density layers helped to establish broad restoration and conservation reach classes. The high‐resolution vegetation mapping precisely identified individual cottonwood trees and tamarisk thickets, which were used to determine specific locations for restoration activities such as beaver dam analogue structures in cottonwood restoration areas, or strategic tamarisk removal in high‐density tamarisk sites. The site prioritization method presented here is effective for planning large‐scale river restoration and is transferable to other desert river systems elsewhere in the world.  相似文献   

8.
9.
10.
The role of climate‐related disturbances on complex host–affiliate relationships remains understudied, largely because affiliate species vary in host use and are often differentially susceptible to disturbance relative to their hosts. Here we report the first set of host–affiliate species–discharge relationships (SDR) in freshwater and examine how anticipated shifts in water availability (flow) will impact coextirpations. We used SDR for freshwater mussels and fish across 11 regions (over 350 rivers) in the continental United States that we coupled to future water availability (2070) to model mussel and fish coextirpations. We also used river‐specific host–affiliate matrices (presence–absence) to evaluate how host‐specificity (mean number of hosts used by an affiliate) and host‐overlap (extent to which affiliates share hosts) relate to extirpation vulnerability. We found that the strength and predictability of SDR models vary geographically and that mussels were more susceptible to flow alterations than fish. These patterns of extirpations were strongest in the southeast where: (1) flow reductions are expected to be greatest; (2) more species are lost per unit flow; (3) and more mussels are expected to be lost per unit of fish. We also found that overall mussel losses associated with reduction in habitat (water availability) were greater than those associated with loss of fish hosts which we assumed to be a function of host redundancy. These findings highlight the utility of SDR as a tool for conservation efforts but they also demonstrate the potential severity of reductions in mussel and fish richness as consequence of climate change and water use. Mussels provide key ecosystem services but face multiple pronged attacks from reductions in flow, habitat, and fish hosts. These losses in biodiversity and ecosystem functions can translate into major effects on food webs and nutrient recycling.  相似文献   

11.
Aim To investigate how plant diversity of whole islands (‘gamma’) is related to alpha and beta diversity patterns among sampling plots within each island, thus exploring aspects of diversity patterns across scales. Location Nineteen islands of the Aegean Sea, Greece. Methods Plant species were recorded at both the whole‐island scale and in small 100 m2 plots on each island. Mean plot species richness was considered as a measure of alpha diversity, and six indices of the ‘variation’‐type beta diversity were also applied. In addition, we partitioned beta diversity into a ‘nestedness’ and a ‘replacement’ component, using the total species richness recorded in all plots of each island as a measure of ‘gamma’ diversity. We also applied 10 species–area models to predict the total observed richness of each island from accumulated plot species richness. Results Mean alpha diversity was not significantly correlated with the overall island species richness or island area. The range of plot species richness for each island was significantly correlated with both overall species richness and area. Alpha diversity was not correlated with most indices of beta diversity. The majority of beta diversity indices were correlated with whole‐island species richness, and this was also true for the ‘replacement’ component of beta diversity. The rational function model provided the best prediction of observed island species richness, with Monod’s and the exponential models following closely. Inaccuracy of predictions was positively correlated with the number of plots and with most indices of beta diversity. Main conclusions Diversity at the broader scale (whole islands) is shaped mainly by variation among small local samples (beta diversity), while local alpha diversity is not a good predictor of species diversity at broader scales. In this system, all results support the crucial role of habitat diversity in determining the species–area relationship.  相似文献   

12.
Adaptive radiations provide unique opportunities to test whether and how recent ecological and evolutionary diversification of host species structures the composition of entire bacterial communities. We used 16S rRNA gene sequencing of faecal samples to test for differences in the gut microbiota of six species of Puerto Rican Anolis lizards characterized by the evolution of distinct ‘ecomorphs’ related to differences in habitat use. We found substantial variation in the composition of the microbiota within each species and ecomorph (trunk‐crown, trunk‐ground, grass‐bush), but no differences in bacterial alpha diversity among species or ecomorphs. Beta diversity analyses revealed subtle but significant differences in bacterial composition related to host phylogeny and species, but these differences were not consistently associated with Anolis ecomorph. Comparison of a trunk‐ground species from this clade (A. cristatellus) with a distantly related member of the same ecomorph class (A. sagrei) where the two species have been introduced and are now sympatric in Florida revealed pronounced differences in the alpha diversity and beta diversity of their microbiota despite their ecological similarity. Comparisons of these populations with allopatric conspecifics also revealed geographic differences in bacterial alpha diversity and beta diversity within each species. Finally, we observed high intraindividual variation over time and strong effects of a simplified laboratory diet on the microbiota of A. sagrei. Collectively, our results indicate that bacterial communities are only weakly shaped by the diversification of their lizard hosts due to the strikingly high levels of bacterial diversity and variation observed within Anolis species.  相似文献   

13.
Aim The scale of observation is important in detecting the spatial variation of biological assemblages, which should be taken into consideration for an appropriate plan of biogeographical conservation. We investigated whether (1) World Wildlife Fund’s ecoregion units are the appropriate scale for conserving ant diversity in Iran, (2) each ecoregion represents a distinct ant community composition and (3) patterns of diversity partitioning differ among four ecoregions. Location Iran, a sampling transect along four arid and semi‐arid ecoregions. Methods We applied hierarchical partitioning to data collected from a nested sampling design including four hierarchical levels: ‘local’, ‘landscape’, ‘ecoregional’ and ‘whole‐region’. Observed alpha and beta diversity components were compared with values of null distributions. Hierarchical cluster analysis was applied to evaluate similarity of ant species composition among ecoregions. Results Partitioning of whole‐region species richness showed that 85% of the species richness was generated by beta diversity among ecoregions and landscapes. The highest value of diversity was generated by beta diversity among ecoregions. Unlike whole‐region partitioning, separate partitioning within each ecoregion revealed that beta component among localities contributed to species richness of each ecoregion. Ecoregions showed different patterns of diversity partitioning. The alpha component contributed largely to the total diversity of two ecoregions, but for two other ecoregions, beta component contributed more than alpha component. Cluster analysis identified four discrete ant species compositions; however, it split landscapes of one ecoregion into two distinct groups. Main conclusions Whole‐region diversity partitioning indicates that ecoregions represent the appropriate scale for conserving ant diversity and that each ecoregion has a distinct ant fauna. However, different conservation strategies should be considered for different ecoregions owing to the differing scales of variation within them. Boundaries of ecoregions remain a subject for further studies. The influence of climate change on ecoregional boundaries should be considered and should be predicted with respect to future conservation maps.  相似文献   

14.
Abstract. Indices of β‐diversity are of two major types, (1) those that measure among‐plot variability in species composition independently of the position of individual plots on spatial or environmental gradients, and (2) those that measure the extent of change in species composition along predefined gradients, i.e. species turnover. Failure to recognize this distinction can lead to the inappropriate use of some β‐diversity indices to measure species turnover. Several commonly‐used indices of β‐diversity are based on Whittaker's βW (βW = γ/α, where γ is the number of species in an entire study area and α is the number of species per plot within the study area). It is demonstrated that these indices do not take into account the distribution of species on spatial or environmental gradients, and should therefore not be used to measure species turnover. The terms ‘β‐diversity’ and ‘species turnover’ should not be used interchangeably. Species turnover can be measured using matrices of compositional similarity and physical or environmental distances among pairs of study plots. The use of indices of β‐diversity and similarity‐distance curves is demonstrated using simulated data sets.  相似文献   

15.
1. The ability to achieve optimal camouflage varies between microhabitats in heterogeneous environments, potentially restricting individuals to a single habitat or imposing a compromise on crypsis to match several habitats. However, animals may exhibit morphological and behavioural attributes that enhance crypsis in different habitats. 2. We used an undescribed fish species, Galaxias‘nebula’, to investigate two objectives. First, we examined two potential methods of enhancing crypsis: change in colour pattern and selection of a suitable background. Second, we characterised the colour pattern of this unstudied fish and assessed its capacity for crypsis. 3. No background selection was apparent but the area of dark pigment expressed varied between backgrounds, which may negate the requirement to be choosy about habitats. The capacity to change colour and selection of a background that maximises crypsis are most likely separate, non‐mutually exclusive strategies. 4. Galaxias‘nebula’ exhibits polymorphic, non‐interchangeable colour patterns that have elements of both background pattern matching and disruptive colouration. This, coupled with habitat characteristics, suggests a combination of generalist and specialist strategies of habitat use. The fish’s camouflage strategy and air‐breathing ability may be key to survival under increasing pressure from habitat degradation and invasive predators.  相似文献   

16.
Ocean circulation, geological history, geographic distance, and seascape heterogeneity play an important role in phylogeography of coral‐dependent fishes. Here, we investigate potential genetic population structure within the yellowbar angelfish (Pomacanthus maculosus) across the Northwestern Indian Ocean (NIO). We then discuss our results with respect to the above abiotic features in order to understand the contemporary distribution of genetic diversity of the species. To do so, restriction site‐associated DNA sequencing (RAD‐seq) was utilized to carry out population genetic analyses on P. maculosus sampled throughout the species’ distributional range. First, genetic data were correlated to geographic and environmental distances, and tested for isolation‐by‐distance and isolation‐by‐environment, respectively, by applying the Mantel test. Secondly, we used distance‐based and model‐based methods for clustering genetic data. Our results suggest the presence of two putative barriers to dispersal; one off the southern coast of the Arabian Peninsula and the other off northern Somalia, which together create three genetic subdivisions of P. maculosus within the NIO. Around the Arabian Peninsula, one genetic cluster was associated with the Red Sea and the adjacent Gulf of Aden in the west, and another cluster was associated with the Arabian Gulf and the Sea of Oman in the east. Individuals sampled in Kenya represented a third genetic cluster. The geographic locations of genetic discontinuities observed between genetic subdivisions coincide with the presence of substantial upwelling systems, as well as habitat discontinuity. Our findings shed light on the origin and maintenance of genetic patterns in a common coral reef fish inhabiting the NIO, and reinforce the hypothesis that the evolution of marine fish species in this region has likely been shaped by multiple vicariance events.  相似文献   

17.
Freshwater mussels (unionids) are increasingly recognized as important providers of ecosystem services, yet are among the most endangered fauna in the world. Because unionids are generally sessile and require specific fish hosts for development and dispersal, they are particularly vulnerable to habitat degradation. Surprisingly, little is known about the distribution of genetic diversity in freshwater mussels and this gap has a negative impact on taxonomy, monitoring, conservation and ecological research in these species. Here, we focus on western North American Anodonta, one of only three genera known to exist in this broad landscape and which contains three highly divergent lineages. We describe phylogeographical subdivision in the most widespread and diverse of these lineages, which includes Anodonta californiensis and Anodonta nuttalliana and occurs from Canada to Mexico. Using mitochondrial and nuclear data, we found that genetic structuring within this clade is inconsistent with morphologically based species designations, but instead follows patterns of vicariance among major hydrogeologic basins. Furthermore, there was a strong tendency for population diversity within drainage systems to increase downstream, implying greater habitat or host fish availability in this direction. Microsatellite results indicated that sampling locations were all genetically distinct, even at short distances. Many of our sample populations showed evidence of a recent demographic bottleneck, although this effect seemed to be very local and not drainage or basin‐specific. This study provides a foundation for the establishment of appropriate management units and future research on adaptive differentiation and host fish relationships.  相似文献   

18.
Abstract. To determine the generality of avian diversity patterns, we investigated patterns of elevational zonation shown by birds and mammals along the eastern slope of the Andes Mountains in southeastern Peru. The strong environmental gradient sampled, entirely within Peru's Manu National Park and Biosphere Reserve, supports highly diverse faunas. Elevational distributions of 901 bird species, 129 bat species, and twenty-eight species of native mice exhibit contrasting patterns in species richness, species composition, and species turnover. Birds and bats showed smooth declines of species richness with elevation, whereas the richness of mouse assemblages was unrelated to elevation. For all three groups, the greatest differences were between lowland and highland faunas, although cutoff points for this contrast varied among groups (≈ 500 m for birds, 750 m for bats, and 1000 m for mice). Differences in composition also separated bird and bat faunas on either side of c. 1400 m (the boundary between montance forest and cloud forest); for mice, this faunal transition may take place nearer to 2000 m. Bird and bat faunas lacked the more discrete zonations suggested for mouse assemblages, as indicated by elevational range profiles and nested subset analyses. Distinct highland assemblages are apparent in two-dimensional histograms of range limits of birds and mice, but not for bats. Highland bat species occupy broader elevational ranges than lowland bat species, but for both birds and mice, species at intermediate elevations had the broadest amplitudes. Finally, clumping of range maxima and minima along the gradient identified zones of pronounced species turnover in each group, but these were generally not strongly associated with the locations of ecotones. Differences in zonation of these groups appear to reflect their different biological attributes and phylogenetic histories. Such differences obviously complicate discussions of ‘general’ diversity patterns, and limit the usefulness of birds to forecast or predict diversity patterns in other more poorly known groups—other groups may show elevated diversity and endemism in areas where avian diversity patterns appear unremarkable. The pronounced contrasts between bats and mice, and the generally intermediate character of avian patterns, suggest that future analyses might profitably partition birds into finer, more homogeneous groups of historically and/or ecologically similar species. Group differences in zonation may ultimately prove explicable with information on both species-abundance patterns and resource distributions.  相似文献   

19.
Ordovician conodonts have been extensively documented in the Argentine Precordillera, providing a robust database for a diverse set of palaeontological studies. Despite the numerous studies, the published taxonomy and stratigraphical ranges, data remain contradictory for particular time intervals. Data from a new conodont collection from the Gualcamayo Formation exposed at the Cerro La Chilca section, and new information on the occurrence and ranges of species from the Las Chacritas and Las Aguaditas sections are presented herein. We used a computer‐assisted numerical sequencing program (CONOP9) to construct a composite stratigraphical range chart from data of 57 conodont species in four sections from the Argentine Precordillera. The identified zones of Lenodus variabilis, Yangtzeplacognathus crassus, Eoplacognathus pseudoplanus and Eoplacognathus suecicus allowed us to verify and adjust the biostratigraphical scheme for the Darriwilian of the Central Precordillera. Additionally, species of the genera Histiodella, namely Histiodella sinuosa, Histiodella holodentata, Histiodella kristinae and Histiodella bellburnenisis, enable a reasonable correlation between the Histiodella‐based zonation and the Baltoscandian zonation. Conodont diversity is evaluated using conventional measures (total diversity and normalized diversity) and an interval‐free approach with CONOP9 software. Our data show a positive pattern in conodont diversification, increasing rapidly through the L. variabilis to the Y. crassus zones and reaching a peak in the E. pseudoplanus Zone. When analysing diversity fluctuations with respect to the environmental changes within the depositional basin, migrations in and out of the basin related to local sea level fluctuations appear to be an important process driving the conodont diversity pattern in the Precordillera.  相似文献   

20.
Aim To propose a model (the choros model) for species diversity, which embodies number of species, area and habitat diversity and mathematically unifies area per se and habitat hypotheses. Location Species richness patterns from a broad scale of insular biotas, both from island and mainland ecosystems are analysed. Methods Twenty‐two different data sets from seventeen studies were examined in this work. The r2 values and the Akaike's Information Criterion (AIC) were used in order to compare the quality of fit of the choros model with the Arrhenius species–area model. The classic method of log‐log transformation was applied. Results In twenty of the twenty‐two cases studied, the proposed model gave a better fit than the classic species–area model. The values of z parameter derived from choros model are generally lower than those derived from the classic species–area equation. Main conclusions The choros model can express the effects of area and habitat diversity on species richness, unifying area per se and the habitat hypothesis, which as many authors have noticed are not mutually exclusive but mutually supplementary. The use of habitat diversity depends on the specific determination of the ‘habitat’ term, which has to be defined based on the natural history of the taxon studied. Although the values of the z parameter are reduced, they maintain their biological significance as described by many authors in the last decades. The proposed model can also be considered as a stepping‐stone in our understanding of the small island effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号