首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Glacier forefield chronosequences, initially composed of barren substrate after glacier retreat, are ideal locations to study primary microbial colonization and succession in a natural environment. We characterized the structure and composition of bacterial, archaeal and fungal communities in exposed rock substrates along the Damma glacier forefield in central Switzerland. Soil samples were taken along the forefield from sites ranging from fine granite sand devoid of vegetation near the glacier terminus to well-developed soils covered with vegetation. The microbial communities were studied with genetic profiling (T-RFLP) and sequencing of clone libraries. According to the T-RFLP profiles, bacteria showed a high Shannon diversity index (H) (ranging from 2.3 to 3.4) with no trend along the forefield. The major bacterial lineages were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Cyanobacteria. An interesting finding was that Euryarchaeota were predominantly colonizing young soils and Crenarchaeota mainly mature soils. Fungi shifted from an Ascomycota-dominated community in young soils to a more Basidiomycota-dominated community in old soils. Redundancy analysis indicated that base saturation, pH, soil C and N contents and plant coverage, all related to soil age, correlated with the microbial succession along the forefield.  相似文献   

2.
Spatial patterns of microbial communities have been extensively surveyed in well‐developed soils, but few studies investigated the vertical distribution of micro‐organisms in newly developed soils after glacier retreat. We used 454‐pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils.  相似文献   

3.
王晓霞  张涛  孙建  张雪兵  李忠勤  娄恺 《生态学报》2010,30(23):6563-6570
为了解冰川前缘土壤微生物在原生演替过程中的生态特征及其影响因素,用空间距离代替时间序列,以乌鲁木齐河源1号冰川终碛堤为起点,沿6个不同演替时期(0,4,15,31,43a和对照)的样带采集土样,以冰川附近发育良好的土壤为对照,测定土壤酶活性、微生物氮矿化与脱氨作用以及微生物生物量。结果表明,土壤脲酶、蛋白酶、酸性磷酸酶、芳基硫酸酯酶、蔗糖酶活性、微生物氮矿化及脱氨作用随演替时间而增加,微生物生物量碳和氮变化呈波动状,趋势不明显。相关分析表明,土壤有机质与酶活、微生物生物量存在极显著正相关(P0.01)。1号冰川前缘微生物多样性指数随着演替时间持续增加,但目前仍未达稳定状态。  相似文献   

4.
Forefields of two receding glaciers were sampled along either a 150 or 200 m long transect at identical spatial intervals for assessment of soil microbial activity and community diversity trends. The forefields belonged to the Dammaglacier (forefield area is 157 ha, 2000 m above sea level) and Rotfirnglacier (100 ha, 2200 m) and at the time of sampling were receding at an estimated rate of 8 and 10 m yr(-1) over the past 5 years, respectively. Direct counting of bacteria (DAPI staining), assessment of dehydrogenase activity (DH), and fluorescein diacetate hydrolysis activity (FDA) were performed to estimate bacteria number and soil microbial activity. Along the Dammaglacier forefield (from youngest to oldest soil), bacteria number (8.21 x 10(7) to 1.49 x 10(9) cells g(-1) soil), DH activity (0 to 61 mg TTC reduced g(-1) soil h(-1)), and FDA activity (0 to 100 mg fluorescein produced g-1 soil h-1) increased, suggesting the development of microbial populations increasing in number and activity. The Rotfirn forefield exhibited similar trends per gram of soil in bacteria number (1.13 x 10(8) to 5.93 x 10(9) cells), DH activity (0 to 36 mg TTC reduced), and FDA activity (2 to 70 mg fluorescein produced), but with more variability among samples than the Damma forefield samples. Molecular assessment of bacterial diversity included denaturing gradient gel electrophoresis (DGGE) and ribosomal intergenic spacer analysis (RISA) of soil DNA. DGGE and RISA revealed that the composition and succession of bacterial populations were different in both forefields. Comparison of Shannon diversity index values indicated that all populations sampled from the Damma forefield were significantly different (p < 0.05). Conversely, similar populations existed in the Rotfirn forefield succession. Overall, the results indicate that diverse bacterial assemblages increasing in number and activity characterize these glacier forefield soils with both forefield successions exhibiting differing modes of bacterial community establishment.  相似文献   

5.
6.
All over the world, glaciers are receding. One key consequence of glacier area loss is the creation of new terrestrial habitats. This presents an experimental opportunity to study both community formation and the implications of glacier loss for terrestrial ecosystems. In this issue of Molecular Ecology, Rime et al. ( 2015 ) describe how microbial communities are structured according to soil depth and development in the forefield of Damma glacier in Switzerland. The study provides insights into the contrasting structures of microbial communities at different stages of soil development. An important strength of the study is the integration of soil depth into the paradigm of primary succession, a feature which has rarely been considered by other studies. These findings underscore the importance of studying the interactions between microbial communities and glaciers at a time when Earth's glacial systems are experiencing profound change.  相似文献   

7.
High Diversity of Diazotrophs in the Forefield of a Receding Alpine Glacier   总被引:2,自引:0,他引:2  
Forefields of receding glaciers are unique and sensitive environments representing natural chronosequences. In such habitats, microbial nitrogen fixation is of particular interest since the low concentration of bioavailable nitrogen is one of the key limitations for growth of plants and soil microorganisms. Asymbiotic nitrogen fixation in the Damma glacier (Swiss Central Alps) forefield soils was assessed using the acetylene reduction assay. Free-living diazotrophic diversity and population structure were resolved by assembling four NifH sequence libraries for bulk and rhizosphere soils at two soil age classes (8- and 70-year ice-free forefield). A total of 318 NifH sequences were analyzed and grouped into 45 unique phylotypes. Phylogenetic analyses revealed a higher diversity as well as a broader distribution of NifH sequences among phylogenetic clusters than formerly observed in other environments. This illustrates the importance of free-living diazotrophs and their potential contribution to the global nitrogen input in this nutrient-poor environment. NifH diversity in bulk soils was higher than in rhizosphere soils. Moreover, the four libraries displayed low similarity values. This indicated that both soil age and the presence of pioneer plants influence diversification and population structure of free-living diazotrophs.  相似文献   

8.
Glacier forefields are an ideal playground to investigate the role of development stages of soils on the formation of plant–microbe interactions as within the last decades, many alpine glaciers retreated, whereby releasing and exposing parent material for soil development. Especially the status of macronutrients like nitrogen differs between soils of different development stages in these environments and may influence plant growth significantly. Thus, in this study, we reconstructed major parts of the nitrogen cycle in the rhizosphere soil/root system of Leucanthemopsis alpina (L.) Heywood as well as the corresponding bulk soil by quantifying functional genes of nitrogen fixation (nifH), nitrogen mineralisation (chiA, aprA), nitrification (amoA AOB, amoA AOA) and denitrification (nirS, nirK and nosZ) in a 10-year and a 120-year ice-free soil of the Damma glacier forefield. We linked the results to the ammonium and nitrate concentrations of the soils as well as to the nitrogen and carbon status of the plants. The experiment was performed in a greenhouse simulating the climatic conditions of the glacier forefield. Samples were taken after 7 and 13 weeks of plant growth. Highest nifH gene abundance in connection with lowest nitrogen content of L. alpina was observed in the 10-year soil after 7 weeks of plant growth, demonstrating the important role of associative nitrogen fixation for plant development in this soil. In contrast, in the 120-year soil copy numbers of genes involved in denitrification, mainly nosZ were increased after 13 weeks of plant growth, indicating an overall increased microbial activity status as well as higher concentrations of nitrate in this soil.  相似文献   

9.
Forefields of receding glaciers are unique and sensitive environments representing natural soil chronosequences, where sulfate availability is assumed to be a limiting factor. Bacterial mineralization of organosulfur is an important sulfate-providing process in soils. We analyzed the diversity of sulfonate-desulfurizing (desulfonating) bacteria in the Damma glacier forefield on the basis of the key gene asfA by terminal restriction fragment length polymorphism and clone libraries. The community structure and sequence diversity of desulfonating bacteria differed significantly between forefield soils deglaciated in the 1990s and the 1950s. Soil age had a strong effect on the desulfonating rhizosphere communities of Agrostis rupestris , but only a slight impact on the ones from Leucanthemopsis alpina . AsfA affiliated to Polaromonas sp. was predominantly found in the more recent ice-free soils and the corresponding rhizospheres of A. rupestris , while a group of unidentified sequences was found to be dominating the matured soils and the corresponding rhizospheres of A. rupestris . The desulfonating bacterial diversity was not affected by varying levels of sulfate concentrations. The level of asfA diversity in recently deglaciated soils suggests that desulfonating bacteria are a critical factor in sulfur cycling, with defined groups dominating at different stages of soil formation.  相似文献   

10.
Microbial community composition (cyanobacteria and eukaryotic microalgae abundance and diversity, bacterial abundance, and soil respiration) was studied in subglacial and periglacial habitats on five glaciers near Ny-Alesund, Svalbard (79 degrees N). Soil microbial communities from nonvegetated sites (subglacial, recently deglaciated, and cryoconite sediments) and sites with plant cover (deglaciated some hundreds of years ago) were analyzed. Physicochemical analyses (pH, texture, water content, organic matter, total C and N content) were also performed on the samples. In total, 57 taxa of 23 genera of cyanobacteriaand algae were identified. Algae from the class Chlorophyceae (25 species) and cyanobacteria (23 species) were richest in biodiversity. The numbers of identified species in single habitat types were 23 in subglacial, 39 inbarren, 22 in cryoconite, and 24 in vegetated soils. The highest cyanobacterial and algal biovolume and cell numbers, respectively, were present in cryoconite (13x10(4) microm3 mg-1 soil and 508 cells per mg of soil), followed by barren (5.7x10(4) and 188), vegetated (2.6x10(4) and 120), and subglacial (0.1x10(4) and 5) soils. Cyanobacteria prevailed in all soil samples. Algae (mainly green algae) were present only as accessory organisms. The density of bacteria showed a slightly different trend to that of the cyanobacterial and algal assemblages. The highest number of bacteria was present in vegetated (mean: 13,722x10(8) cells per mg of soil dry wt.), followed by cryoconite (3802x10(8)), barren (654x10(8)), and subglacial (78x10(8)) soils. Response of cyanobacteria and algae to physical parameters showed that soil texture and water content are important for biomass development. In addition, it is shown that nitrogen and water content are the main factors affecting bacterial abundance and overall soil respiration. Redundancy analysis (RDA) with forward selection was used to create a model explaining variability in cyanobacterial, algal, and bacterial abundance. Cryoconites accounted for most of the variation in cyanobacteria and algae biovolume, followed by barren soils. Oscillatoriales, desmids, and green coccoid algae preferred cryoconites, whereas Nostocales and Chroococcales occurred mostly in barren soils. From the data obtained, it is evident that of the studied habitats cryoconite sediments are the most suitable ones for the development of microbial assemblages. Although subglacial sediments do not provide as good conditions as cryoconites, they support the survival of microbial communities. Both mentioned habitats are potential sources for the microbial recolonization of freshly deglaciated soil after the glacier retreat.  相似文献   

11.
The variations in the soil culturable bacterial communities and biochemical parameters of early successional soils from a receding glacier in the Tanggula Mountain were investigated. We examined low organic carbon (C) and nitrogen (N) contents and enzymatic activity, correlated with fewer bacterial groups and numbers in the glacier forefield soils. The soil pH values decreased, but the soil water content, organic C and total N significantly increased, along the chronosequence. The soil C/N ratio decreased in the early development soils and increased in the late development soils and it did not correlate with the soil age since deglaciation. The activities of soil urease, sucrase, protease, polyphenol oxidase, catalase, and dehydrogenase increased along the chronosequence. The numbers of culturable bacteria in the soils increased as cultured at 25°C while decreased at 4°C from younger soils to older soils. Total numbers of culturable bacteria in the soils cultured at 25°C were significantly positively correlated to the soil total N, organic C, and soil water content, as well as the activities of soil urease, sucrase, dehydrogenase, catalase, and polyphenol oxidase. We have obtained 224 isolates from the glacier forefield soils. The isolates were clustered into 28 groups by amplified ribosomal DNA restriction analysis (ARDRA). Among them, 27 groups and 25 groups were obtained from the soils at 25°C and at 4°C incubation temperatures, respectively. These groups are affiliated with 18 genera that belong to six taxa, viz, Actinobacteria, Gammaproteobacteria, Bacteroidetes, Firmicutes, Alphaproteobacteria, and Betaproteobacteria. The dominant taxa were Actinobacteria, Gammaproteobacteria, and Bacteroidetes in all the samples. The abundance and the diversity of the genera isolated at 25°C incubation temperature were greater than that at 4°C.  相似文献   

12.
Glacier forefields are ideal ecosystems to study the development of nutrient cycles as well as single turnover processes during soil development. In this study, we examined the ecology of the microbial nitrogen (N) cycle in bulk soil samples from a chronosequence of the Damma glacier, Switzerland. Major processes of the N cycle were reconstructed on the genetic as well as the potential enzyme activity level at sites of the chronosequence that have been ice-free for 10, 50, 70, 120 and 2000 years. In our study, we focused on N fixation, mineralization (chitinolysis and proteolysis), nitrification and denitrification. Our results suggest that mineralization, mainly the decomposition of deposited organic material, was the main driver for N turnover in initial soils, that is, ice-free for 10 years. Transient soils being ice-free for 50 and 70 years were characterized by a high abundance of N fixing microorganisms. In developed soils, ice-free for 120 and 2000 years, significant rates of nitrification and denitrification were measured. Surprisingly, copy numbers of the respective functional genes encoding the corresponding enzymes were already high in the initial phase of soil development. This clearly indicates that the genetic potential is not the driver for certain functional traits in the initial phase of soil formation but rather a well-balanced expression of the respective genes coding for selected functions.  相似文献   

13.
The succession of bacterial communities inhabiting the forefield of the Dammaglacier (Switzerland) was investigated in soils ranging in successional age from 0 to 100 years since deglaciation. Overall activity per bacterial cell was estimated by the amount of fluorescein diacetate (FDA) hydrolyzed per DAPI-stained cell, and an index of "opportunism" was determined from the ratio of culturable to total cells (C:T ratio). Ribosomal intergenic spacer analysis (RISA) was used to estimate the richness of dominant phylotypes and to construct rank-abundance plots of the dominant populations. We observed a biphasic trend in specific cellular activity, which exhibited minima in the 0- and 100-year-old soils while a maximum activity per cell was reached in the 70-y soil. On average, the C:T ratio showed the same trend as the specific activity, although we observed some differences between the two sampling transects. RISA revealed a decrease in dominant phylotype richness as successional age increased, and rank-abundance plots indicated that the evenness of the dominant bacterial phylotypes significantly decreased with successional age. The combination of specific cellular activity and C:T ratio results suggested the presence of an r-K continuum of bacteria while RISA showed that richness and evenness of dominant phylotypes decreased with successional age. We conclude that bacterial succession in the glacier forefield was a dynamic process with adaptation to the differing stages of succession occurring on both the individual and community levels.  相似文献   

14.
We performed a detailed study on the carbon build‐up over the 140‐year‐long chronosequence of the Damma glacier forefield, Switzerland, to gain insights into the organic carbon dynamics during the initial stage of soil formation and ecosystem development. We determined soil carbon and nitrogen contents and their stable isotopic compositions, as well as molecular‐level composition of the bulk soils, and recalcitrance parameters of carbon in different fractions. The chronosequence was divided into three age groups, separated by small end moraines that resulted from two glacier re‐advances. The net ecosystem carbon balance (NECB) showed an exponential increase over the last decades, with mean annual values that range from 100 g C m?2 yr?1 in the youngest part to over 300 g C m?2 yr?1 in a 60–80 years old part. However, over the entire 140‐year chronosequence, the NECB is only 20 g C m?2 yr?1, similar to results of other glacier forefield studies. The difference between the short‐ and long‐term NECB appears to be caused by reductions in ecosystem carbon (EC) accumulation during periods with a colder climate. We propose that two complementary mechanisms have been responsible: 1) Reductions in net primary productivity down to 50% below the long‐term mean, which we estimated using reconstructed effective temperature sums. 2) Disturbance of sites near the terminus of the re‐advanced glacier front. Stabilization of soil organic matter appeared to play only a minor role in the coarse‐grained forefield. We conclude that the forefield ecosystem, especially primary productivity, reacts rapidly to climate changes. The EC gained at warm periods is easily lost again in a cooling climate. Our conclusions may also be valid for other high mountain ecosystems and possibly arctic ecosystems.  相似文献   

15.
16.
Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.  相似文献   

17.
Functional microarrays are powerful tools that allow the parallel detection of multiple strains at the species level and therefore to rapidly obtain information on microbial communities in the environment. However, the design of suitable probes is prone to uncertainties, as it is based so far on in silico predictions including weighted mismatch number and Gibbs free-energy values. This study describes the experimental selection of probes targeting subsequences of the nifH gene to study the community structure of diazotrophic populations present in Damma glacier (Swiss Central Alps) forefield soils. Using the Geniom® One in situ synthesis technology (Febit, Germany), 2727 in silico designed candidate probes were tested. A total of 946 specific probes were selected and validated. This probe set covered a large diversity of the NifH phylotypes (35 out of the 45) found in the forefield. Hybridization predictors were tested statistically. Gibbs free-energy value for probe-target binding gave the best prediction for hybridization efficiency, while the weighted mismatch number was not significantly associated to probe specificity. In this study, we demonstrate that extensive experimental tests of probe-hybridization behaviour against sequences present in the studied environment remain a prerequisite for meaningful probe selection.  相似文献   

18.
Nutrient Addition Dramatically Accelerates Microbial Community Succession   总被引:1,自引:0,他引:1  
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.  相似文献   

19.
When glaciers retreat they expose barren substrates that become colonized by organisms, beginning the process of primary succession. Recent studies reveal that heterotrophic microbial communities occur in newly exposed glacial substrates before autotrophic succession begins. This raises questions about how heterotrophic microbial communities function in the absence of carbon inputs from autotrophs. We measured patterns of soil organic matter development and changes in microbial community composition and carbon use along a 150-year chronosequence of a retreating glacier in the Austrian Alps. We found that soil microbial communities of recently deglaciated terrain differed markedly from those of later successional stages, being of lower biomass and higher abundance of bacteria relative to fungi. Moreover, we found that these initial microbial communities used ancient and recalcitrant carbon as an energy source, along with modern carbon. Only after more than 50 years of organic matter accumulation did the soil microbial community change to one supported primarily by modern carbon, most likely from recent plant production. Our findings suggest the existence of an initial stage of heterotrophic microbial community development that precedes autotrophic community assembly and is sustained, in part, by ancient carbon.  相似文献   

20.
冰川消退带微生物群落演替及生物地球化学循环   总被引:1,自引:0,他引:1  
周汉昌  马安周  刘国华  庄国强 《生态学报》2018,38(24):9021-9033
冰川是生物圈重要组分之一。由于全球气候变化世界多地冰川加速消融,暴露原本被冰盖覆盖的区域,这些区域被称为冰川消退区域(glacier retreat area)或冰川前部区域(glacier foreland)。自暴露开始消退区随即发生初生演替,随着演替进行,物质循环逐步建立,生物量和土壤C、N总量逐步增加。生态系统C、N输入最初以矿化外来物为主,逐渐转变为以生物固C、固N为主。演替早期生态系统的发育主要受土壤C、N含量的限制,而演替后期的限制性营养物转变为P。演替区域土壤逐渐发育并促进生态位的分化,细菌、真菌、古菌,病毒及其他微生物群落的生物量和多样性不断增加直至达到该地区可承受的极值。随着生存条件的改善,不同生态策略物种的更替导致每个演替阶段微生物群落结构的差异。整体上,伴随演替进行微生物群落丰度、结构和活性呈现梯度性变化。气候变化对冰川消退带生态演替结果产生多方面的影响,而这些影响结果又综合反馈气候变化,因此目前难以准确估计气候变化对消退带生态演替的净效应。综述了近年冰川消退带微生物群落演替方面相关的研究结果,同时分别对该区域物质循环的建立、微生物群落演替和气候变化造成的影响这三个方面进行详细描述,并指出当前研究的不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号