首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods have recently been developed to present vast libraries of random peptides on the surface of filamentous phage. To introduce a degree of conformational constraint into random peptides, a library of hexapeptides flanked by cysteine residues (capable of forming cyclic disulfides) was constructed. This library was screened using the platelet glycoprotein, IIb/IIIa, which mediates the aggregation of platelets through binding of fibrinogen. A variety of peptides containing the sequence Arg-Gly-Asp or Lys-Gly-Asp were discovered and synthesized. The cyclic, disulfide-bonded forms of the peptides bound IIb/IIIa with dissociation constants in the nanomolar range, while reduced forms or an analogue in which Ser replaced the Cys residues bound considerably less tightly. These results demonstrate the feasibility for introducing conformational constraints into random peptide libraries and also demonstrates the potential for using phage peptide libraries to discover pharmacologically active lead compounds.  相似文献   

2.
Using 6mer and 12mer phage peptide libraries three unique phage clones were identified which specifically bind to a monoclonal anti‐FITC antibody, B13‐DE1. The two 6mer and one 12mer peptide insert sequences are clearly related to each other and contain a high proportion of hydrophobic amino acids. The peptides are bound by the antibody combining site of B13‐DE1 probably in a similar manner to FITC and represent therefore true peptidic mimics of the fluorescein hapten. No reactivity of the peptides could be demonstrated with another monoclonal anti‐fluorescein antibody or with polyclonal anti‐fluorescein antibodies. Immunization of mice with the peptides resulted in the production of antibodies cross‐reacting with all peptides but not with fluorescein. The results show that phage peptide libraries can be used to isolate mimotope peptides which can mimic low molecular weight structures seen by a specific antibody and probably other recognition molecules. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Peptide libraries displayed by filamentous bacteriophage have proven a powerful tool for the discovery of novel peptide agonists, antagonists and epitope mimics. Most phage-displayed peptides are fused to the N terminus of either the minor coat protein, pIII, or the major coat protein, pVIII. We report here that peptides containing cysteine residues, displayed as N-terminal fusions to pVIII, can form disulfide-bridged homodimers on the phage coat. Phage clones were randomly selected from libraries containing one or two fixed Cys residues, and surveyed for the presence of peptide-pVIII homodimers by SDS-PAGE analysis that involved pretreatment of the phage with reducing or thiol-modifying agents. For all phage whose recombinant peptide contained a single Cys residue, a significant fraction of the peptide-pVIII molecules were displayed as dimers on the phage coat. The dimeric form was in greater abundance than the monomer in almost all cases in which both forms could be reliably observed. Occasionally, peptides containing two Cys residues also formed dimers. These results indicate that, for a given pVIII-displayed peptide bearing a single Cys residue, a significant fraction of the peptide (>40 %) will dimerize regardless of its sequence; however, sequence constraints probably determine whether all of the peptide will dimerize. Similarly, only occasionally do peptides bearing two Cys residues form intermolecular disulfide bridges instead of intramolecular ones; this indicates that sequence constraints may also determine dimerization versus cyclization. Sucrose-gradient analysis of membranes from cells expressing pVIII fused to a peptide containing a single Cys residue showed that dimeric pVIII is present in the cell prior to its assembly onto phage. A model of the peptide-pVIII homodimer is discussed in light of existing models of the structure and assembly of the phage coat. The unique secondary structures created by the covalent association of peptides on the phage surface suggest a role for homo- and heterodimeric peptide libraries as novel sources of bioactive peptides.  相似文献   

4.
In an effort to develop a structured peptide scaffold that lacks a disulfide bond and is thus suitable for molecular recognition applications in the reducing environment of the cytosol, we investigated engineered versions of the trpzip class of β‐hairpin peptides. We have previously shown that even most highly folded members of the trpzip class (i.e. the 16mer peptide HP5W4 ) are substantially destabilized by the introduction of mutations in the turn region and therefore not an ideal peptide scaffold. To address this issue, we used a FRET‐based live cell screening system to identify extended trpzip‐type peptides with additional stabilizing interactions. One of the most promising of these extended trpzip‐type variants is the 24mer xxtz1 ‐peptide with the sequence KAWTHDWTWNPATGKWTWLWRKNK. A phage display library of this peptide with randomization of six residues with side chains directed towards one face of the hairpin was constructed and panned against immobilized streptavidin. We have also explored the use of xxtz1 ‐peptide for the presentation of an unstructured peptide ‘loop’ inserted into the turn region. Although NMR analysis provided no direct evidence for structure in the xxtz1 ‐peptide with the loop insertion, we did attempt to use this construct as a scaffold for phage display of randomized peptide libraries. Panning of the resulting libraries against streptavidin resulted in the identification of peptide sequences with submicromolar affinities. Interestingly, substitution of key residues in the hairpin‐derived portion of the peptide resulted in a 400‐fold decrease in Kd, suggesting that the hairpin‐derived portion plays an important role in preorganization of the loop region for molecular recognition. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Protein p16INK4a (p16) is a well‐known biomarker for diagnosis of human papillomavirus (HPV) related cancers. In this work, we identify novel p16 binding peptides by using phage display selection method. A random heptamer phage display library was screened on purified recombinant p16 protein‐coated plates to elute only the bound phages from p16 surfaces. Binding affinity of the bound phages was compared with each other by enzyme‐linked immunosorbent assay (ELISA), fluorescence imaging technique, and bioinformatic computations. Binding specificity and binding selectivity of the best candidate phage‐displayed p16 binding peptide were evaluated by peptide blocking experiment in competition with p16 monoclonal antibody and fluorescence imaging technique, respectively. Five candidate phage‐displayed peptides were isolated from the phage display selection method. All candidate p16 binding phages show better binding affinity than wild‐type phage in ELISA test, but only three of them can discriminate p16‐overexpressing cancer cell, CaSki, from normal uterine fibroblast cell, HUF, with relative fluorescence intensities from 2.6 to 4.2‐fold greater than those of wild‐type phage. Bioinformatic results indicate that peptide ‘Ser‐His‐Ser‐Leu‐Leu‐Ser‐Ser’ binds to p16 molecule with the best binding score and does not interfere with the common protein functions of p16. Peptide blocking experiment shows that the phage‐displayed peptide ‘Ser‐His‐Ser‐Leu‐Leu‐Ser‐Ser’ can conceal p16 from monoclonal antibody interaction. This phage clone also selectively interacts with the p16 positive cell lines, and thus, it can be applied for p16‐overexpressing cell detection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
A 7‐mer peptide (S‐T‐L‐P‐L‐P‐P) that bound to various divalent cations was selected from a phage display peptide library. Isothermal calorimetric analysis revealed that the peptide bound to Pb2+, Cd2+, Hg2+, and Cu2+. Through the use of CD studies, no secondary structural changes were observed for the peptide upon binding to divalent cations. Ala scanning mutant peptides bound to Hg2+ with a reduced affinity. However, no single substitution was shown to affect the overall affinity. We suggest that Pro residues chelate divalent cations, while the structure formed by the peptide is also important for the binding process. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
Bacterial peptide display libraries enable the rapid and efficient selection of peptides that have high affinity and selectivity toward their targets. Using a 15‐mer random library on the outer surface of Escherichia coli (E.coli), high‐affinity peptides were selected against a staphylococcal enterotoxin B (SEB) protein after four rounds of biopanning. On‐cell screening analysis of affinity and specificity were measured by flow cytometry and directly compared to the synthetic peptide, off‐cell, using peptide‐ELISA. DNA sequencing of the positive clones after four rounds of microfluidic magnetic sorting (MMS) revealed a common consensus sequence of (S/T)CH(Y/F)W for the SEB‐binding peptides R338, R418, and R445. The consensus sequence in these bacterial display peptides has similar amino acid characteristics with SEB peptide sequences isolated from phage display. The Kd measured by peptide‐ELISA off‐cell was 2.4 nM for R418 and 3.0 nM for R445. The bacterial peptide display methodology using the semiautomated MMS resulted in the discovery of selective peptides with affinity for a food safety and defense threat. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Journal of Molecular Recognition published by John Wiley & Sons, Ltd.  相似文献   

8.
Peptides with both an affinity for ZnO and the ability to generate ZnO nanoparticles have attracted attention for the self‐assembly and templating of nanoscale building blocks under ambient conditions with compositional uniformity. In this study, we have analyzed the specific binding sites of the ZnO‐binding peptide, EAHVMHKVAPRP, which was identified using a phage display peptide library. The peptide binding assay against ZnO nanoparticles was performed using peptides synthesized on a cellulose membrane using the spot method. Using randomized rotation of amino acids in the ZnO‐binding peptide, 125 spot‐synthesized peptides were assayed. The peptide binding activity against ZnO nanoparticles varied greatly. This indicates that ZnO binding does not depend on total hydrophobicity or other physical parameters of these peptides, but rather that ZnO recognizes the specific amino acid alignment of these peptides. In addition, several peptides were found to show higher binding ability compared with that of the original peptides. Identification of important binding sites in the EAHVMHKVAPRP peptide was investigated by shortened, stepwise sequence from both termini. Interestingly, two ZnO‐binding sites were found as 6‐mer peptides: HVMHKV and HKVAPR. The peptides identified by amino acid substitution of HKVAPR were found to show high affinity and specificity for ZnO nanoparticles. Biotechnol. Bioeng. 2010;106: 845–851. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Angiotensin I converting enzyme (ACE)-inhibitory peptides were screened from a random peptide-displayed phage library using ACE-coupled liposomes. Among four kinds of inhibitory peptides selected by biopanning with two different elution strategies, a peptide (LSTLRSFCA) showed the highest inhibitory activity with an IC(50) value of 3microM. By measuring inhibitory activities of fragments of the peptide, it was found that the RSFCA region was a functional site to inhibit strongly the ACE catalytic activity, and particularly both Arg and Cys residues were essential for the strong inhibitory activity. The inhibitory activity of RRFCA was slightly increased, while that of the RSFRA, in which the Cys residue was replaced by Arg, was decreased to greater extent in comparison with the inhibitory activity of RSFCA. Taking into account the results obtained from the SPOT analysis, it was suggested that the Arg and Phe residues in RSFCA were important for a specific interaction with ACE, and the Cys residue inhibited the ACE activity. The cystein-based ACE-inhibitory peptides have not been isolated from processed food materials. These findings suggested that the biopanning method utilizing protein-coupled liposomes and random peptide libraries might have a possibility to screen new functional peptides that are not found in processed food materials.  相似文献   

10.
Aluminum- and mild steel-binding peptides from phage display   总被引:4,自引:0,他引:4  
Using a phage library displaying random peptides of 12 amino acids on its surface, several peptides were found that bind to aluminum and mild steel. Like other metal-binding peptides, no obvious consensus motif has been found for these peptides. However, most of them are rich in hydroxyl-containing amino acids, serine or threonine, or contain histidine. For the aluminum-binding peptides, peptides with a higher number of hydroxyl-containing amino acids bind to the aluminum surface more tightly. For example, Val-Pro-Ser-Ser-Gly-Pro-Gln-Asp-Thr-Arg-Thr-Thr, which contains five hydroxyl-containing amino acid residues, was selected four-fold more frequently than a peptide containing only one serine, suggesting an important role for the hydroxyl-containing amino acids in the metal–peptide interaction.  相似文献   

11.
Peptide affinity tags have become efficient tools for the purification of recombinant proteins from biological mixtures. The most commonly used ligands in this type of affinity chromatography are immobilized metal ions, proteins, antibodies, and complementary peptides. However, the major bottlenecks of this technique are still related to the ligands, including their low stability, difficulties in immobilization, and leakage into the final products. A model approach is presented here to overcome these bottlenecks by utilizing macroporous ceramic fluorapatite (CFA) as the stationary phase in chromatography and the CFA‐specific short peptides as tags. The CFA chromatographic materials act as both the support matrix and the ligand. Peptides that bind with affinity to CFA were identified from a randomized phage display heptapeptide library. A total of five rounds of phage selection were performed. A common N‐terminal sequence was found in two selected peptides: F4‐2 (KPRSMLH) and F5‐4 (KPRSVSG). The peptide F5‐4, displayed by more than 40% of the phages analyzed in the fifth round of selection, was subjected to further studies. Selectivity of the peptide for the chemical composition and morphology of CFA was assured by the adsorption studies. The dissociation constant, obtained from the F5‐4/CFA adsorption isotherm, was in the micromolar range, and the maximum capacity was 39.4 nmol/mg. The chromatographic behavior of the peptides was characterized on a CFA stationary phase with different buffers. Preferential affinity and specific retention properties suggest the possible application of the phage‐derived peptides as a tag in CFA affinity chromatography for enhancing the selective recovery of proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
利用15肽随机肽库确定抗TNF单抗表位的研究   总被引:7,自引:0,他引:7  
利用抗TNF的T5单抗作为筛选配基,对经DNA碱基组成分析证明具有良好随机性的15肽库进行亲和筛选.经过三轮筛选后,以硝酸纤维素膜斑点印迹法观察到良好的富集效果.由第三轮挑选出的31个克隆进行DNA测序,结果推出的优势克隆的短肽为CYRRPAGGLPGICSA等,竞争性ELISA实验证明带有以上短肽的噬菌体与TNF能竞争性地与T5单抗结合.该多肽可能是T5单抗所识别的模拟表位  相似文献   

13.
There are many examples of bioactive, disulfide‐rich peptides and proteins whose biological activity relies on proper disulfide connectivity. Regioselective disulfide bond formation is a strategy for the synthesis of these bioactive peptides, but many of these methods suffer from a lack of orthogonality between pairs of protected cysteine (Cys) residues, efficiency, and high yields. Here, we show the utilization of 2,2′‐dipyridyl diselenide (PySeSePy) as a chemical tool for the removal of Cys‐protecting groups and regioselective formation of disulfide bonds in peptides. We found that peptides containing either Cys(Mob) or Cys(Acm) groups treated with PySeSePy in trifluoroacetic acid (TFA) (with or without triisopropylsilane (TIS) were converted to Cys‐S–SePy adducts at 37 °C and various incubation times. This novel Cys‐S–SePy adduct is able to be chemoselectively reduced by five‐fold excess ascorbate at pH 4.5, a condition that should spare already installed peptide disulfide bonds from reduction. This chemoselective reduction by ascorbate will undoubtedly find utility in numerous biotechnological applications. We applied our new chemistry to the iodine‐free synthesis of the human intestinal hormone guanylin, which contains two disulfide bonds. While we originally envisioned using ascorbate to chemoselectively reduce one of the formed Cys‐S–SePy adducts to catalyze disulfide bond formation, we found that when pairs of Cys(Acm) residues were treated with PySeSePy in TFA, the second disulfide bond formed spontaneously. Spontaneous formation of the second disulfide is most likely driven by the formation of the thermodynamically favored diselenide (PySeSePy) from the two Cys‐S–SePy adducts. Thus, we have developed a one‐pot method for concomitant deprotection and disulfide bond formation of Cys(Acm) pairs in the presence of an existing disulfide bond.  相似文献   

14.
We have selected ligands for Puumala hantavirus, the causative agent of nephropathia epidemica, from a seven-amino-acid peptide library flanked by cysteines and displayed on a filamentous phage. To direct the selection to areas on the virus particle which are essential for infection, phages were competitively eluted with neutralizing monoclonal antibodies specific for the viral glycoproteins. The selected phage populations were specific for the same sites as the antibodies and mimicked their functions. The peptide insert, CHWMFSPWC, when displayed on the phages, completely inhibited Puumala virus infection in cell culture at the same effective concentration as the eluting antibody specific for envelope glycoprotein G2. The binding of the phage clones to the virus and inhibition of infection were not necessarily coincident; Pro-6 was critical for virus inhibition, while consensus residues Trp-2 and Phe-4 were essential for binding. The strategy described can be applied to any virus for production of molecules mimicking the effect of neutralizing antibodies.  相似文献   

15.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   

16.
Phage Peptide Libraries   总被引:1,自引:0,他引:1  
Filamentous phage particles have been central in the construction of libraries displaying vast numbers of random peptides. These random peptides can be antigenically presented as fusions to coat proteins III and VIII of the phage. The isolation of ligate-reactive phage from an immense background of nonspecific phage is achieved by the biopanning process. Enrichment of reactive phage relative to unreactive phage occurs with alternate rounds of affinity selection to the desired molecular target and amplification of the specifically bound phage. This allows the isolation of rare binding species contained in the phage peptide libraries. Each phage particle contains the information in its genome pertaining to the type of random peptide insert displayed. Hence, the identification of binding motifs displayed on ligate-reactive phage is revealed by sequencing the relevant insert site in the phage genome. Phage peptide libraries have been used to isolate ligands to an array of protein ligates. The libraries have proved particularly effective in defining the binding sites of monoclonal antibodies and to some extent polyclonal sera. The analysis of the peptide insert sequences of a number of different clones of antibody binding phage can reveal a great deal about the nature and restriction of the amino acid residues critical for the antibody–antigen interaction.  相似文献   

17.
Phage display technology is a powerful selection approach to identify strong and specific binders to a large variety of targets. In this study, we compared the efficacy of a phage library displaying human heavy chain complementarity determining region 3 (HCDR3) repertoires with a set of conventional random peptide libraries for the identification of CXCR4 antagonists using a peptide corresponding to the second extracellular loop of the receptor CXCR4 as target. A total of 11 selection campaigns on this target did not result in any specific ligand from the random peptide libraries. In contrast, a single selection campaign with an HCDR3 library derived from the IgM repertoire of a nonimmunized donor resulted in nine specific peptides with lengths ranging from 10 to 19 residues. Four of these HCDR3 sequences interacted with native receptor and the most frequently isolated peptide displayed an affinity of 5.6 μm and acted as a CXCR4 antagonist (IC(50) = 23 μm). To comprehend the basis of the highly efficient HCDR3 library selection, its biochemical properties were investigated. The HCDR3 length varied from 3 to 21 residues and displayed a biased amino acid content with a predominant proportion of Tyr, Gly, Ser and Asp. Repetitive and conserved motifs were observed in the majority of the HCDR3 sequences. The strength and efficacy of the HCDR3 libraries reside in the combination of multiple size peptides and a naturally biased sequence variation. Therefore, HCDR3 libraries represent a powerful and versatile alternative to fully randomized peptide libraries, in particular for difficult targets.  相似文献   

18.
Aqueous two-phase systems allow for the unequal distribution of proteins and other molecules in water-rich solutions containing phase separating polymers or surfactants. One approach to improve the partitioning properties of recombinant proteins is to produce the proteins as fused to certain peptide tags. However, the rational design of such tags has proven difficult since it involves a compromise between multivariate parameters such as partitioning properties, solvent accessibility and production/secretion efficiency. In this work, a novel approach for the identification of suitable peptide tag extensions has been investigated. Using the principles of selection, rather than design, peptide sequences contributing to an improved partitioning have been identified using phage display technology. A 40 million member phagemid library of random nona-peptides, displayed as fusion to the major coat protein pVIII of the filamentous phage M13, was employed in the selection of top-phase partitioning phage particles in a PEG/sodium phosphate system. After multiple cycles of selection by partitioning, peptides with high frequencies of both tyrosine and proline residues were found to be over represented in selected clones. The identified peptide sequences, or derivatives thereof, were subsequently individually analyzed for their partitioning behavior as displayed on phage, as free synthetic peptides and as genetically fused to a recombinant model target protein. The results showed that novel peptide sequences capable of enhancing top-phase partitioning without interfering with protein production and secretion indeed could be identified for the aqueous two-phase system investigated.  相似文献   

19.
Improving a particular function of molecules is often more difficult than identifying such molecules ab initio. Here, a method to acquire higher affinity and/or more functional peptides was developed as a progressive library selection method. The primary library selection products were utilized to build a secondary library composed of blocks of 4 amino acids, of which selection led to peptides with increased activity. These peptides were further converted to randomly generate paired peptides. Cathepsin E‐inhibitors thus obtained exhibited the highest activities and affinities (pM order). This was also the case with cathepsin E‐activating peptides, proving the methodological effectiveness. The primary, secondary, and tertiary library selections can be regarded as module‐finding, module‐shuffling, and module‐pairing, respectively, which resembles the progression of the natural evolution of proteins. The mode of peptide binding to their target proteins is discussed in analogy to antibodies and epitopes of an antigen. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Protein disulphide isomerase is an enzyme that catalyses disulphide redox reactions in proteins. In this paper, fluorogenic and interchain disulphide bond containing peptide libraries and suitable substrates, useful in the study of protein disulphide isomerase, are described. In order to establish the chemistry required for the generation of a split-synthesis library, two substrates containing an interchain disulphide bond, a fluoroescent probe and a quencher were synthesized. The library consists of a Cys residue flanked by randomized amino acid residues at both sides and the fluoroescent Abz group at the amino terminal. All the 20 natural amino acids except Cys were employed. The library was linked to PEGA‒beads via methionine so that the peptides could be selectively removed from the resin by cleavage with CNBr. A disulphide bridge was formed between the bead‒linked library and a peptide containing the quenching chromophore (Tyr(NO2)) and Cys(pNpys) activated for reaction with a second thiol. The formation and cleavage of the interchain disulphide bonds in the library were monitored under a fluoroescence microscope. Substrates to investigate the properties of protein disulphide isomerase in solution were also synthesized. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号