首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visual and Chemical Release of Feeding Behavior in Adult Rainbow Trout   总被引:4,自引:2,他引:2  
Feeding behavior of adult rainbow trout (Oncorhynchus mykiss)is released by visual and/or chemical stimuli. Detection ofeither a conditioned visual or a conditioned chemical stimuluscreates an excitatory feeding state within the central nervoussystem which turns on feeding behavior composed of swimming,turning and biting/snapping actions. Particular amino acidsthat are highly effective physiological taste stimuli that arealso detected through olfaction (e.g. L-proline, L-alanine,L-leucine) release the initial sequence of food searching andbiting/snapping behaviors; however, an effective olfactory,but poor gustatory, stimulus (e.g. L-arginine) is rarely effectivebehaviorally. After bilateral removal of the paired olfactoryorgans, visual stimuli alone release the entire set of feedingbehavior patterns. Since amino acids that are highly potentphysiological taste stimuli do not release either feeding behavioror reflex biting/snapping actions in adult anosmic rainbow trout,it is postulated that the olfactory system detects potent tastestimuli and provides the afferent input for arousal and therelease of all feeding activity patterns. Chem. Senses 22: 375–382,1997.  相似文献   

2.
Foraging in large-scale (navigation between patches), small-scale (choice of within-patch feeding sites), and micro-scale (close inspection of food items) space presents variable cognitive challenges. The reliability and usefulness of spatial memory and perceptual cues during food search in a forest environment vary among these spatial scales. This research applied an experimental field design to test the ability of a free-ranging group composed of eight black-horned capuchin monkeys, Cebus nigritus, inhabiting a forest fragment in Porto Alegre, State of Rio Grande do Sul, Brazil, to use food-associated spatial, visual, olfactory, and quantitative (amount of food) cues during small-scale foraging decisions. The experimental design involved the establishment of a feeding station composed of eight feeding platforms distributed in a circular arrangement. A series of six experiments, each lasting 20 days, was conducted from March to August 2005. Two feeding platforms in each experimental session contained a food reward (real banana), whereas the remaining six platforms contained either a sham banana or an inaccessible real banana. Data on capuchin monkey foraging behavior at the feeding stations were collected by the "all occurrences" sampling method. The performance of the capuchins in the experiments was analyzed based on the first two platforms inspected in each session. The study group inspected feeding platforms in 571 occasions during 113 sessions. Capuchins used visual cues and spatial information (and adopted a win-return strategy) for finding the platforms baited with real bananas and showed weak evidence of the integration of spatial and quantitative cues, but failed to show evidence of using olfactory cues. In addition, individual differences in social rank and foraging behavior affected opportunities for learning and the performance in the cognitive tasks.  相似文献   

3.
视觉和嗅觉信号对果蝇食物搜寻行为的协同作用   总被引:1,自引:0,他引:1  
冯波  王霞  李岩  杜永均 《昆虫学报》2013,56(7):792-798
为了探索视觉和嗅觉信号在昆虫食物搜寻过程中的作用, 本研究利用杨梅和橘子为引诱物, 在实验室条件下测定了嗅觉和视觉信号诱集到的黑腹果蝇Drosophila melanogaster数量, 分析了嗅觉经历对果蝇嗅觉和视觉食物搜寻的影响。发现同源性嗅觉和视觉信号存在的杨梅诱集到的果蝇数量显著大于单一的视觉信号和嗅觉信号, 但异源性嗅觉和视觉信号组合诱集到的果蝇数量和单独的嗅觉信号相似。嗅觉信号预处理不仅能够显著增加嗅觉信号诱集到的果蝇数量, 其中杨梅嗅觉信号对杨梅预处理果蝇的吸引能力与视觉和嗅觉信号存在的杨梅相似, 而且异源性嗅觉和视觉信号组合诱集到的预处理果蝇数量也不低于视觉和嗅觉信号存在的杨梅。另外杨梅嗅觉信号预处理也能够显著增强杨梅视觉信号诱集到的果蝇数量。但嗅觉预处理并不会改变同源性视觉和嗅觉信号组合诱集到的果蝇数量。本研究表明, 果蝇同时利用视觉和嗅觉信号进行食物搜寻, 因此同源性视觉和嗅觉信号在果蝇诱集过程中具有协同作用。另外果蝇具有较强的记忆和学习能力, 能够将记忆中的嗅觉信号应用于食物搜寻。本研究结果不仅有利于我们了解果蝇在自然状态下的食物搜寻机制, 而且有利于开发更有效的果蝇新型诱捕器。  相似文献   

4.
The ability of food to establish and maintain response habits and conditioned preferences depends largely on the function of brain dopamine systems. While dopaminergic transmission in the nucleus accumbens appears sufficient for some forms of reward, the role of dopamine in food reward does not appear to be restricted to this region. Dopamine plays an important role in both the ability to energize feeding and to reinforce food-seeking behaviour; the role in energizing feeding is secondary to the prerequisite role in reinforcement. Dopaminergic activation is triggered by the auditory and visual as well as the tactile, olfactory, and gustatory stimuli of foods. While dopamine plays a central role in the feeding and food-seeking of normal animals, some food rewarded learning can be seen in genetically engineered dopamine-deficient mice.  相似文献   

5.
Topographic complexity is a key component of habitats that influences communities by modulating the interactions among individuals that drive population processes such as recruitment, competition, and predation. A broad range of disturbance agents affect biological communities indirectly through their modifications to habitat complexity. Individuals that best judge the threat of predation within their environment and can trade‐off vigilance against behaviors that promote growth will be rewarded with the highest fitness. This study experimentally examined whether topographic habitat complexity affected the way a damselfish assessed predation risk using olfactory, visual, or combined cues. Fish had higher feeding rates in the low complexity environment. In a low complexity environment, damage‐released olfactory cues and visual cues of predators complemented each other in the prey's assessment of risk. However, where complexity was high and visual cues obscured, prey had lower feeding rates and relied more heavily on olfactory cues for risk assessment. Overall, fish appear to be more conservative in the high complexity treatment. Low complexity promoted extremes of behavior, with higher foraging activity but a greater response to predation threats compared with the high complexity treatment. The degree of flexibility that individuals and species have in their ability to adjust the balance of senses used in risk assessment will determine the extent to which organisms will tolerate modifications to their habitat through disturbance.  相似文献   

6.
  1. Researchers have used multiple methods to understand spatial mapping memory used by arboreal mammals for orientation: the change-point test, measures of path tortuosity, field experiments with feeding platforms, nearest-neighbour feeding tree methods, complex calculations of travel route parameters, and theoretical models.
  2. This literature review provides details of all of these methods, highlights previous results from spatial mapping memory studies, and discusses perspectives for future studies.
  3. Previous studies have shown that various arboreal mammals, mostly in the order Primates, can memorise spatial environments using a cognitive map. Two types of maps are characterised: the topological map, based on landmarks and reused routes, and the Euclidean map, including the ability to create shortcuts by measuring distances and distinguishing between directions. Most of the studies showed that mammals do not travel randomly but, due to the difficulty of determining which spatial map is used, the use of cognitive maps remains hypothetical.
  4. When studying spatial mapping memory, data collection and analysis should account for the species’ characteristics, such as the home-range size, food preferences, and types of movements. The role of sensory cues (visual, auditory, olfactory) is crucial to understanding spatial orientation. The most relevant way to determine how arboreal mammals orientate themselves in space is by using a mix of methods: random theoretical models, collecting data in a controlled environment, measuring different parameters of travel patterns, and considering the use of sensory cues and environmental factors of the study sites.
  5. Research pertaining to spatial mapping memory in arboreal mammals and forest-dwelling mammals is important for understanding cognitive abilities in mammal species, and more studies are needed in mammals of various orders.
  相似文献   

7.
Snails become conditioned by a single feeding episode to locate foods which they were unable to locate prior to feeding. To identify which of the different stimulus parameters of the food mediate learning, snails were presented with isolated stimulus components during feeding and re-tested the next day for their ability to locate the food. None of the individual components was sufficient to promote conditioning. Odor combined with a bulk stimulus conditioned the animals, as indicated by their subsequently locating the food. Elimination of the olfactory sensory inputs from the anterior and/or posterior tentacles prior to conditioning revealed that the acquisition of the olfactory memory requires olfactory stimulation of the sensory epithelia on the anterior tentacles. Recall of memory during olfactory orientation requires functional epithelia on the posterior tentacles, which suggests that the same odor is processed by different input pathways under different situations. Animals with the olfactory epithelia functional on the same side during conditioning and food searching were able to locate the conditioned food. Animals with different epithelia functional during conditioning and food searching failed, which suggests that olfactory memory is stored within one side of the nervous system and cannot be accessed from the contralateral side. Accepted: 28 November 1997  相似文献   

8.
In several mammalian species, prenatal exposure to odours can elicit later positive consummatory behaviour in response to substrates bearing that odorant. In birds, the sense of smell has been considerably underestimated, and very little is known about the effects of early sensory experience on the regulation of feeding behaviour. We tested the hypothesis that the feeding behaviour of the domestic chicken could be regulated by olfactory learning during the embryonic life. To that end, chicken embryos were exposed to an olfactory stimulus (blend of essential oil of orange and nature identical vanillin) from embryonic day (ED) 12 to ED20, and chicks were tested between 4 and 9 d of age. In short‐term choice tests, at day 4 and 5, chickens previously exposed to a low concentration (LC) of the olfactory stimulus spent a higher proportion of time eating a familiar or an unfamiliar food bearing the olfactory stimulus compared to non‐exposed control chickens. Conversely, chickens previously exposed to a high concentration (HC) of the olfactory stimulus were found to avoid all foods bearing the olfactory stimulus. On a 24‐ h time scale at day 7–8, LC and HC birds, but not controls, ingest significantly less familiar food containing the olfactory stimulus. This result indicated a long‐term effect of the early olfactory experience on feeding preferences. We demonstrated that chickens can utilize information from their pre‐hatch chemosensory environment to guide their later feeding behaviour. A pre‐hatch effect of the intensity of odour signals in the regulation of feeding behaviour is reported here for the first time.  相似文献   

9.
Analyzing cerebral asymmetries in various species helps in understanding brain organization. The left and right sides of the brain (lateralization) are involved in different cognitive and sensory functions. This study focuses on dolphin visual lateralization as expressed by spontaneous eye preference when performing a complex cognitive task; we examine lateralization when processing different visual stimuli displayed on an underwater touch-screen (two-dimensional figures, three-dimensional figures and dolphin/human video sequences). Three female bottlenose dolphins (Tursiops truncatus) were submitted to a 2-, 3- or 4-, choice visual/auditory discrimination problem, without any food reward: the subjects had to correctly match visual and acoustic stimuli together. In order to visualize and to touch the underwater target, the dolphins had to come close to the touch-screen and to position themselves using monocular vision (left or right eye) and/or binocular naso-ventral vision. The results showed an ability to associate simple visual forms and auditory information using an underwater touch-screen. Moreover, the subjects showed a spontaneous tendency to use monocular vision. Contrary to previous findings, our results did not clearly demonstrate right eye preference in spontaneous choice. However, the individuals' scores of correct answers were correlated with right eye vision, demonstrating the advantage of this visual field in visual information processing and suggesting a left hemispheric dominance. We also demonstrated that the nature of the presented visual stimulus does not seem to have any influence on the animals' monocular vision choice.  相似文献   

10.
Rats were repeatedly exposed to an open arena containing two depletable food sources in a discrete-trials procedure. Their movement patterns were recorded and compared to adaptive foraging tactics such as minimizing distance or energy expenditure, thigmotaxis, and trail following. They were also compared to the predictions of the associative route-finder model of Reid and Staddon [Reid, A.K., Staddon, J.E.R., 1998. A dynamic route finder for the cognitive map. Psychol. Rev. 105 (3), 585-601]. We manipulated the presence/absence of food, goal cups, and a wooden runway to determine the influence of local and distal stimuli (visual, olfactory, and tactile) on movement patterns. Increased experience in the arena produced decreases in travel distance and time to the food sources. Local and distal stimuli influenced movement patterns in ways compatible with visual beacons and trail following. The route-finder model accurately predicted movement patterns except those that were influenced by local and distal stimuli. These results show how certain stimuli influence movement and provide a guide for the incorporation of local and distal stimuli in a future version of the dynamic route-finder model.  相似文献   

11.
寄生蜂寻找隐蔽性寄主害虫的行为机制   总被引:1,自引:0,他引:1  
王小艺  杨忠岐 《生态学报》2008,28(3):1257-1269
林木蛀干类害虫具有高度的隐蔽性,是林业上的一类重要害虫,也是目前世界上最难防治的害虫类群之一.寄生蜂在与寄主长期的协同进化过程中,形成了搜索、发现和攻击寄主害虫的独特机制,能够有效地找到并寄生它们.总结了寄生性天敌寻找、发现并成功定位隐蔽性寄主害虫的行为学机制.寄生蜂可以利用来自嗅觉的化学信息物质(如寄主、寄主粪便、虫道共生菌的挥发性气味)、寄主成虫的化学通讯物质、来自视觉的植物表面色差信息、来自触觉的寄主保护物性状特征、来自寄主取食和运动所产生的介质振动信号以及来自寄主活动和代谢的红外辐射等多种途径有效地发现隐蔽性害虫的位置,从而完成寄生行为.有些寄生蜂还能综合利用来源不同的多种信息,从而提高寄主定位的可靠性和准确性.本文还对寄生蜂寻找寄主的这些线索在生物防治上可能的利用途径和前景进行了讨论.这对促进我国在该领域的研究,充分利用天敌昆虫,提高生物防治效率具有参考价值.  相似文献   

12.
Very little is known about how nocturnal primates find their food. Here we studied the sensory basis of food perception in wild-caught gray mouse lemurs (Microcebus murinus) in Madagascar. Mouse lemurs feed primarily on fruit and arthropods. We established a set of behavioral experiments to assess food detection in wild-born, field-experienced mouse lemurs in short-term captivity. Specifically, we investigated whether they use visual, auditory, and motion cues to find and to localize prey arthropods and further whether olfactory cues are sufficient for finding fruit. Visual cues from motionless arthropod dummies were not sufficient to allow reliable detection of prey in choice experiments, nor did they trigger prey capture behavior when presented on the feeding platform. In contrast, visual motion cues from moving prey dummies attracted their attention. Behavioral observations and experiments with live and recorded insect rustling sounds indicated that the lemurs make use of prey-generated acoustic cues for foraging. Both visual motion cues and acoustic prey stimuli on their own were sufficient to trigger approach and capture behavior in the mouse lemurs. For the detection of fruit, choice experiments showed that olfactory information was sufficient for mouse lemurs to find a piece of banana. Our study provides the first experimental data on the sensory ecology of food detection in mouse lemurs. Further research is necessary to address the role of sensory ecology for food selection and possibly for niche differentiation between sympatric Microcebus species.  相似文献   

13.
Wang X Y  Yang Z Q 《农业工程》2008,28(3):1257-1269
Wood borers are important forest insect pests and difficult to be controlled owing to their concealed behavior. However, parasitic wasps can effectively ascertain and parasitize wood borers as well as other concealed pests by using special searching, finding and attacking mechanisms, which have been developed during the course of long-term coevolution with their hosts. The present paper summarizes the behavioral mechanisms of parasitic wasps involved in searching and locating their concealed hosts. Parasitic wasps can accurately find the location of their hidden hosts and then parasitize them, usually by using olfactory semiochemicals from hosts (lavare and adults), host frass and symbiotic microorganisms in host galleries; visual signals from color contrast of plant surface; contact stimuli from characters of host physical defense; substrate vibrations produced by host feeding and movement; infrared radiation from host activities and metabolizability. Some parasitic wasps may integrate the information of several stimuli from different sources to enhance the reliability and accuracy of host locations. In addition, the potentials for utilizing the host location signals of parasitoids in biological control are discussed.  相似文献   

14.
Adult pulmonate snails (Helix pomatia) were released equidistant between two types of food, carrot and potato, respectively. Naive snails moved in different directions and did not locate either food above chance, although both foods were readily eaten upon direct contact. After a single carrot feeding episode, 75% of the carrot-fed snails moved directly towards the carrot and ate it. Conversely, potato-fed snails located the potato in 67% of the cases. Snails that were fed apple or lettuce behaved like naive animals, with the majority of animals (75% in both cases) locating neither the carrot nor the potato.The ability of snails to locate this particular food after a single feeding episode was maintained for at least 11 days, provided that the snails were not exposed to other foods in the interim. If the animals were fed a different food (but still tested for food-finding ability to the initially conditioned food) their orientation preference decreased gradually over a period of 5 days.Although the snails' orientation is based upon olfactory cues, exposure to food odor alone is not sufficient to enable food-finding; additional feeding related stimuli are necessary.These findings indicate that Helix do not possess a predisposition for the foods tested, and further suggest that processes underlying food-finding and food selection are strongly influenced by learning experiences. The conditioning phenomenon underlying food-finding behavior has been called Food-Attraction Conditioning, and appears to be a crucial link between the ecologies of learning and foraging behaviors. The accessibility of the snail's nervous system should permit neuronal analysis of the mechanisms underlying such a unique and complex learning phenomenon.  相似文献   

15.
Food quality is an important consideration in the foraging strategy of all animals, including herbivores. Those that can detect and assess the nutritional value of plants from afar, using senses such as smell and sight, can forage more efficiently than those that must assess food quality by taste alone. Selective foraging not only affects herbivore fitness but can influence the structure and composition of plant communities, yet little is known about how olfactory and visual cues help herbivores to find preferred plants. We tested the ability of a free‐ranging, generalist mammalian browser, the swamp wallaby Wallabia bicolor, to use olfactory and visual plant cues to find and/or browse differentially on Eucalyptus pilularis seedlings grown under different nutrient conditions. Low‐nutrient seedlings differed from high‐nutrient seedlings, having lighter coloured leaves, red stems and lower biomass and nitrogen content. In the absence of visual cues, wallabies used odour to differentiate vials containing cut seedlings. They visited and investigated patches with high‐nutrient seedling odour most, followed by patches with low‐nutrient seedling odour, and patches with no added odour least. However, when visual and olfactory cues of seedlings were present, wallabies reversed their foraging response and were more likely to browse low‐ than high‐nutrient seedlings. This browsing difference, in turn, disappeared when long‐range visual cues were reduced by pinning seedlings horizontal to the ground. We suggest that visual cues overrode the effects of olfactory cues on browsing patterns of intact seedlings. Our study shows that herbivores can respond to odours of higher nutrient plants but in ecologically realistic scenarios they use a variety of visual and olfactory cues, with a context‐dependent outcome that is not always selection of high nutrient food. Our results demonstrate the importance of testing the sensory abilities of herbivores in realistic multi‐sensory settings to understand their function in selective foraging.  相似文献   

16.
Current research suggests that hemispheric lateralization has significant fitness consequences. Foraging, as a basic survival function, is a perfect research model to test the fitness impact of lateralization. However, our understanding of lateralized feeding behavior is based predominantly on laboratory studies, while the evidence from wild animals in natural settings is limited. Here we studied visual lateralization in yellow‐footed green pigeons (Treron phoenicoptera) feeding in the wild. We aimed to test whether different types of food objects requiring different searching strategies elicit different eye/hemisphere biases. When feeding on relatively large, uniformly colored food objects (mahua flowers) which can be present or absent in the viewed patch, the majority of pigeons relied mostly on the left eye–right hemisphere. In contrast, when feeding on smaller and more abundant food objects, with color cues signaling its ripeness (sacred figs), right‐eye (left‐hemisphere) preference prevailed. Our results demonstrate that oppositely directed visual biases previously found in different experimental tasks occur in natural feeding situations in the form of lateralized viewing strategies specific for different types of food. The results suggest that pigeons rely on the hemisphere providing more advantages for the consumption of the particular type of food objects, implying the relevance of brain lateralization as a plastic adaptation to ecological demands. We assessed the success of food discrimination and consumption to examine the link between lateralization and cognitive performance. The use of the preferred eye resulted in better discrimination of food items. Discrimination accuracy and feeding efficiency were significantly higher in lateralized individuals. The results showed that visual lateralization impacted pigeons’ feeding success, implicating important fitness benefits associated with lateralization.  相似文献   

17.
Tetragonisca angustula stingless bees are considered as solitary foragers that lack specific communication strategies. In their orientation towards a food source, these social bees use chemical cues left by co-specifics and the information obtained in previous foraging trips by the association of visual stimuli with the food reward. Here, we investigated their ability to learn the association between odors and reward (sugar solution) and the effect on learning of previous encounters with scented food either inside the hive or during foraging. During food choice experiments, when the odor associated with the food was encountered at the feeding site, the bees’ choice is biased to the same odor afterwards. The same was not the case when scented food was placed inside the nest. We also performed a differential olfactory conditioning of proboscis extension response with this species for the first time. Inexperienced bees did not show significant discrimination levels. However, when they had had already interacted with scented food inside the hive, they were able to learn the association with a specific odor. Possible olfactory information circulation inside the hive and its use in their foraging strategies is discussed.  相似文献   

18.
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question, we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by color‐conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines.  相似文献   

19.
It is now well established that vasotocin (AVT) and its mammalian homologue vasopressin influence various social behaviors in vertebrates, but less is known about the mechanisms through which these peptides modulate behavior. In male roughskin newts, Taricha granulosa, AVT stimulates a courtship behavior, amplectic clasping. Three general explanations for how AVT affects male courtship behavior have been considered: by enhancing a central state of sexual motivation, by affecting sensorimotor integration mechanisms in individual sensory modalities, or by influencing a nonspecific state of attention, arousal, or anxiety. AVT administration enhanced appetitive responses to visual and olfactory sexual stimuli, as would be expected if AVT affects a state of sexual motivation that affects behavioral responses to sexual stimuli regardless of the sensory modality in which they are processed. However, AVT selectively enhanced responses to female olfactory stimuli (sex pheromones), but similarly enhanced responses to female and food-related visual stimuli (worms), thus questioning the utility of such a motivational mechanism, as responses to female stimuli were not selectively enhanced in all sensory modalities. We therefore propose that exogenous AVT independently influences olfactory processes associated with orientation/attraction toward a female sex pheromone and visual processes associated with orientation/attraction toward a visual feature common to females and worms. In further experiments AVT administration failed to stimulate feeding behavior but did decrease locomotor activity. Thus, AVT does not stimulate courtship behavior in this species by enhancing the animals' general state of attention or by decreasing general anxiety, as responses to nonsexual, attractive stimuli were not uniformly enhanced, nor by stimulating general arousal, as activity levels did not increase. Rather, the data support the conclusion that AVT affects courtship by influencing specific sensorimotor processes associated with behavioral responses to individual releasing stimuli, which suggests a mechanistic framework for understanding socially motivated behavior is this species.  相似文献   

20.
Bioassays in a wind tunnel showed that a combination of four stimuli releases intense host‐seeking and blood‐feeding behavioral responses from females of the Asian tiger mosquito, Aedes albopictus, and the yellow fever mosquito, Aedes aegypti. The stimuli are carbon dioxide, water vapor, warmth, and adenosine triphosphate (ATP). Mosquitoes responded to this combination with a repertoire of blood‐feeding behaviors that included upwind flight, landing, probing, and engorgement. Absence of carbon dioxide, water vapor, or ATP from the combination of stimuli or exposure to temperatures 12° C below or above human‐host temperature (38° C) significantly attenuated blood‐feeding behavior in both species. Although there is literature documenting the individual importance of each of these stimuli, our work represents the first instance where this combination of stimuli was found sufficient to elicit a complete repertoire of blood‐feeding behaviors in these mosquitoes without involvement of any host specific odor. When mosquitoes were exposed to the four stimuli along with N,N‐diethyl‐3‐methylbenzamide (DEET), feeding behavior was greatly suppressed. We hypothesize that a possible mode of action for DEET against these mosquitoes involves interference of warmth and/or water vapor receptors. An electrophysiological study designed to determine if DEET adversely affects the function of these receptors would be illuminating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号