首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison was made of the subunit organization of chromatin from regions of the genome with different metaphase chromosome banding characteristics by analyzing the accessibility of early and late replicating DNA in synchronized Chinese hamster ovary cells to digestion with staphylococcal nuclease. Three measures of nuclease susceptibility were employed: (1) the release of acid-soluble material; (2) a digestion index, P, which corresponds to the proportion of internucleosome segments which experienced at least one cleavage event; and (3) the size distribution of DNA fragments isolated from digested chromatin. Little or no difference was observed in the initial rates with which nuclease converted early and late replicating chromatin to acid-soluble material, although the initial digestion rates varied with time of cell collection in the cycle (metaphase > G1 mid-S > late-S or G2). Measurements of the digestion indices of material isolated from interphase cells suggested that initial cleavage events were more rapid in early replicating chromatin than in late replicating chromatin. In contrast, electrophoretic analysis revealed that oligomer DNA fragments from early labelled metaphase chromatin were slightly larger than corresponding fragments from late labelled metaphase chromatin. The size distribution of DNA in submonomer fragments obtained from extensively digested chromatin appeared to be identical regardless of the timing of replication or cell collection. Those small differences in chromatin digestibility that were observed may reflect subtle variations in the accessibility of internucleosome regions or perhaps in the higher-order arrangement of nucleosomes. However, no gross variation in accessibility to staphylococcal nuclease digestion was observed in chromatin localized to metaphase chromosome regions with vastly different cytological staining properties.  相似文献   

2.
Maturation of newly replicated chromatin of simian virus 40 and its host cell   总被引:13,自引:0,他引:13  
The DNA in replicating simian virus 40 chromatin and cellular chromatin was labeled with short pulses of [3H]thymidine. The structure of pulse-labeled nucleoprotein complexes was studied by micrococcal nuclease digestion. It was found that in both newly replicated viral and cellular chromatin, a structural state appears which is characterized by an increased sensitivity to nuclease and a faster than usual rate of cleavage to DNA fragments of monomeric nucleosome size and smaller. Pulse-chase experiments show that each of these effects requires a characteristic time to disappear in both systems, suggesting the existence of different sub-processes of chromatin maturation. One of these processes, detectable by the reversion of the unusually fast production of subnucleosomal fragments, is delayed in SV40 chromatin replication.  相似文献   

3.
Replicating chromatin is known to be more sensitive to micrococcal nuclease than bulk chromatin. We have used this property and a fractionation procedure based on the specific release of replicating material under mild micrococcal nuclease digestion, in order to analyse both the kinetics of maturation of newly replicated DNA into nucleosomes and the structure of the replicating material. As other authors, we initially observed that repetitive unit of newly replicated chromatin was shorter than that of bulk chromatin, however this result appears to be due to sliding of nucleosomes along the chromatin fibers close to the replicating fork. Replicative chromatin was fractionated and analysed. A prenucleosomal peak was observed and preliminary characterized.  相似文献   

4.
Pulse-labeled simian virus 40 (SV40) chromatin as well as uniformly labeled viral chromatin are immunoprecipitable by an SV40-specific tumor antiserum and therefore contain bound tumor antigen (T antigen). Single-stranded calf thymus DNA, immobilized on cellulose, competes effectively for T antigen binding with uniformly labeled nonreplicating, but not with pulse-labeled replicating, chromatin. Furthermore, T antigen dissociates in 0.5 M NaCl from nonreplicating chromatin and from purified SV40 DNA, whereas most T antigen remains associated with replicating chromatin even in the presence of 1.2 to 1.5 M NaCl. We used filtration through DNA-cellulose columns and treatment with high salt to prepare pulse-labeled immunoreactive viral chromatin. The viral DNA was digested before, and in other experiments after, immunoprecipitation with the restriction endonuclease HindIII. We found that SV40 DNA sequences, most probably representing the entire genome, remain in the immunoprecipitate after HindIII digestion, indicating an association of T antigen with origin-distal sections of replicating viral DNA. The results suggest that T antigen in replicating chromatin may be bound to regions close to replicating points. We performed control experiments with in vitro-formed complexes of T antigen and SV40 DNA. When these complexes were immunoprecipitated and HindIII digested we found, in agreement with previous studies, that only the origin containing the HindIII C fragment carried bound T antigen.  相似文献   

5.
D B Jump  T R Butt  M Smulson 《Biochemistry》1979,18(6):983-990
The relationship between poly(adenosine diphosphate) ribosylation of nuclear proteins and functionally different forms of chromatin from mid-S-phase HeLa nuclei was investigated. The major observations emerging from this study were that unique nonhistone proteins were modified in mid-S-phase HeLa nuclei. The major acceptor for poly(adenosine diphosphate-ribose) [poly(ADP-Rib)] was an internucleosomal nonhistone protein (protein C; 125 000 molecular weight). Histones H3, H1, H2b, and H2a but not H4 were ADP-ribosylated in S-phase nuclei. Chromatin fragments preferentially released by micrococcal nuclease were enriched in nonhistone proteins, poly(ADP)-ribosylated nuclear proteins, poly(ADP-Rib) polymerase activity and nascent DNA from the DNA replicating fork. In extended forms of chromatin, contiguous to the DNA replicating fork, poly(ADP-Rib) polymerase was maximally active. However, in chromatin distal to the replicating fork (i.e., more condensed structures), nucleosomal histones and histone H1 were not significantly ADP-ribosylated, and poly(ADP-Rib) polymerase activity was depressed two- to threefold. The data suggest that a subset of nucleosomes in extended regions of chromatin is subject to extensive ADP ribosylation.  相似文献   

6.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

7.
Y Chu  T S Huang    M T Hsu 《Nucleic acids research》1990,18(13):3705-3711
Under exhaustive digestion conditions P1 nuclease was found to cleave a subpopulation of intracellular SV40 chromatin only once. The major P1 cleavage site in SV40 DNA was mapped at the origin of DNA replication, and the two minor sites at the SV40 enhancers. The P1-sensitive SV40 chromatin subpopulation was found to have higher superhelical density than the bulk of the intracellular SV40 chromatin. Furthermore, pulse labeled SV40 DNA which had higher superhelical density than that of the steady state viral DNA (S.S.Chen and M.T.Hsu, J.Virol 51:14-19, 1984) was also found to be preferentially cleaved by P1 nuclease. These results are consistent with a supercoil-dependent alteration of chromatin conformation near the regulatory region of the viral genome that can be recognized by P1 nuclease. Since P1 nuclease cleaves the subpopulation of SV40 chromatin only once without further degradation, this nuclease can be used as a general tool to define viral or cellular chromatin fraction with altered chromatin conformation and to map nuclease hypersensitive sites. Preliminary studies indicate that P1 makes limited double stranded cleavages in cellular chromatin to generate large DNA fragments.  相似文献   

8.
The content of histone H1 (H1/H4 ratio) in dinucleosomes with the DNA of various length liberated from L-cell nuclear chromatin by micrococcal nuclease was analyzed. It was found that the histone H1 content in the dichromatosome is two times as low as that in the largest dinucleosome and in the complete mononucleosome. The set of chromatin fragments liberated from the Triton X-100 pretreated nuclei differs considerably from that of chromatin sites devoid of histone H1 (the de novo replicating chromatin and the chromatin formed on the undermethylated DNA). A scheme for asymmetric distribution of histone H1 with molecules oriented along the nucleosomal fibril, which reflects the peculiarities of chromatin fragmentation by micrococcal nuclease with predominant liberation of the dichromatosome, is proposed.  相似文献   

9.
The structure of [3H]thymidine pulse-labeled chromatin in lymphocytes differs from that of non-replicating chromatin by several operational criteria which are related to the higher nuclease sensitivity of replicating chromatin. These structural features of replicating chromatin rapidly disappear when the [3H]thymidine pulse is followed by a chase in the presence of an excess of non-radioactive thymidine. However, when the rate of DNA replication is reduced, as in cycloheximide-treated lymphocytes, chromatin maturation is retarded. No chromatin maturation is observed when nuclei from pulse-labeled lymphocytes are incubated in vitro in the absence of DNA precursors. In contrast, when these nuclei are incubated under conditions known to be optimal for DNA replication, the structure of replicating chromatin is efficiently converted to that of 'mature', non-replicating chromatin. We conclude that the properties of nascent DNA and/or the distance from the replication fork are important factors in chromatin maturation.  相似文献   

10.
Kerry S. Bloom  John Carbon 《Cell》1982,29(2):305-317
We have examined the chromatin structure of the centromere regions of chromosomes III and XI in yeast by using cloned functional centromere DNAs (CEN3 and CEN11) as labeled probes. When chromatin from isolated nuclei is digested with micrococcal nuclease and the resulting DNA fragments separated electrophoretically and blotted to nitrocellulose filters, the centromeric nucleosomal sub-units are resolved into significantly more distinct ladders than are those from the bulk of the chromatin. A discrete protected region of 220–250 bp of CEN sequence flanked by highly nuclease-sensitive sites was revealed by mapping the exact nuclease cleavage sites within the centromeric chromatin. On both sides of this protected region, highly phased and specific nuclease cutting sites exist at nucleosomal intervals (160 bp) for a total length of 12–15 nucleosomal subunits. The central protected region in the chromatin of both centromeres spans the 130 bp segment that exhibits the highest degree of sequence homology (71%) between functional CEN3 and CEN11 DNAs. This unique chromatin structure is maintained on CEN sequences introduced into yeast on autonomously replicating plasmids, but is not propagated through foreign DNA sequences flanking the inserted yeast DNA.  相似文献   

11.
Stepwise assembly of chromatin during DNA replication in vitro.   总被引:29,自引:6,他引:23  
A cell free system that supports replication-dependent chromatin assembly has been used to determine the mechanism of histone deposition during DNA replication. CAF-I, a human cell nuclear factor, promotes chromatin assembly on replicating SV40 DNA in the presence of a crude cytosol replication extract. Biochemical fractionation of the cytosol extract has allowed separation of the chromatin assembly reaction into two steps. During the first step, CAF-I targets the deposition of newly synthesized histones H3 and H4 to the replicating DNA. This reaction is dependent upon and coupled with DNA replication, and utilizes the newly synthesized forms of histones H3 and H4, which unlike bulk histone found in chromatin, do not bind to DNA by themselves. The H3/H4-replicated DNA complex is a stable intermediate which exhibits a micrococcal nuclease resistant structure and can be isolated by sucrose gradient sedimentation. In the second step, this replicated precursor is converted to mature chromatin by the addition of histones H2A and H2B in a reaction that can occur after DNA replication. The requirement for CAF-I in at least the first step of the reaction suggests a level of cellular control for this fundamental process.  相似文献   

12.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

13.
We investigated the chromatin organization of living cells with a combination of recently developed approaches for histone and DNA labeling. Nucleosomal DNA was labeled with a histone H2B-GFP (green fluorescent protein) fusion protein and the chromatin organization of living HeLa cells was analyzed by high resolution confocal microscopy. Within the perinuclear and perinucleolar regions chromatin was organized into large-scale fibers of 2 to 8 microm in length and 300 to 500 nm in diameter. Within the nuclear interior we observed similar large-scale fibers, but in addition focal as well as diffuse forms of organization. Comparison with standard labeling and detection procedures revealed major differences in the chromatin organization observed. Chromatin organization revealed by the distribution of histone H2B-GFP was directly compared with the functional organization of chromatin by Cy3-dUTP labeling of DNA replicating at a specific time. DNA regions replicating at a specific time display characteristic physical and functional properties. Analysis of Cy3-labeled foci revealed that they are associated with all three forms of chromatin organization (fibrillar, focal and diffuse). In particular, Cy3-labeled foci appeared as discontinuous regions of large-scale fibers. These results demonstrate that large-scale chromatin fibers have discontinuous functional characteristics.  相似文献   

14.
15.
A soluble system was developed that could support DNA replication in simian virus 40 (SV40) chromosomes. DNA synthesis in this system required the presence of purified SV40 large tumor antigen, SV40 chromosomes prepared from virus-infected monkey cells, a crude extract from HeLa cells, and several low-molecular-weight components. In comparison to the replication of purified SV40 form I DNA, the rate of DNA synthesis was 15 to 20% in this system. DNA synthesis started near the replication origin of SV40 and proceeded bidirectionally in a semiconservative manner. Micrococcal nuclease digestion experiments revealed that the replicated DNA produced in this system became organized into a regularly spaced array of nucleosome core particles when an appropriate amount of purified HeLa core histones was added to the reaction mixture. SV40 form I DNA replicating under the same conditions was also assembled into nucleosomes, which were arranged in a rather dispersed manner and formed an aberrant chromatin structure.  相似文献   

16.
Chromatin from duck erythrocytes was modified in vitro by the carcinogen N-acetoxy-N-2-acetylaminofluorene (N-Ac-O-AAF). The distribution of the carcinogen along the DNA molecule was studied using staphylococcal nuclease which allows the fractionation of chromatin DNA into two zones. It was shown that the carcinogen binds preferentially to the regions of chromatin sensitive to the enzyme; however, the regions of DNA tightly bound to histones and resistant to the enzyme react comparatively well. The single-strand specific nuclease S1 which digests DNA modified by the carcinogen in vitro did not digest chromatin under the conditions used. Some possible mechanisms for the interaction of the carcinogen with chromatin are discussed.  相似文献   

17.
The structures of DNAs present in various intracellular forms of simian virus 40 (SV40) nucleoprotein complexes were analyzed by micrococcal nuclease digestion. The results showed that the 70S SV40 chromatin was completely sensitive to nuclease digestion, whereas CsCl gradient-purified mature virion was completely resistant. Virion assembly intermediates with different degrees of virion maturation showed intermediate resistance, and three products were found: nucleosomal DNA fragments, representing the fraction of intermediates that were sensitive to nuclease; linear SV40 genome-sized DNA, representing the more mature intermediates that contained one or limited defects in the capsid shell; and supercoiled SV40, which was derived from mature virions. These digestion products, however, remained associated with capsid shells after nuclease digestion. These results were consistent with the model in which maturation of the SV40 virion is achieved through the organization of capsid proteins that accumulate around SV40 chromatin. Mild digestion of SV40 nucleoprotein complexes with micrococcal nuclease revealed the difference in nucleosome repeat length between SV40 chromatin and virion assembly intermediates. A novel DNA fragment of about 75 nucleotides was observed early in nuclease digestion.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) DNA replication intermediates exist in a complex nonlinear structure that does not migrate into a pulsed-field gel. Genetic evidence suggests that the product of the UL12 gene, termed alkaline nuclease, plays a role in processing replication intermediates (R. Martinez, R. T. Sarisky, P. C. Weber, and S. K. Weller, J. Virol. 70:2075–2085, 1996). In this study we have tested the hypothesis that alkaline nuclease acts as a structure-specific resolvase. Cruciform structures generated with oligonucleotides were treated with purified alkaline nuclease; however, instead of being resolved into linear duplexes as would be expected of a resolvase activity, the artificial cruciforms were degraded. DNA replication intermediates were isolated from the well of a pulsed-field gel (“well DNA”) and treated with purified HSV-1 alkaline nuclease. Although alkaline nuclease can degrade virion DNA to completion, digestion of well DNA results in a smaller-than-unit-length product that migrates as a heterogeneous smear; this product is resistant to further digestion by alkaline nuclease. The smaller-than-unit-length products are representative of the entire HSV genome, indicating that alkaline nuclease is not inhibited at specific sequences. To further probe the structure of replicating DNA, well DNA was treated with various known nucleases; our results indicate that replicating DNA apparently contains no accessible double-stranded ends but does contain nicks and gaps. Our data suggest that UL12 functions at nicks and gaps in replicating DNA to correctly repair or process the replicating genome into a form suitable for encapsidation.  相似文献   

19.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

20.
Replication of simian virus 40 (SV40) chromatin in vitro is inhibited by chloride but stimulated by acetate anions even at physiological concentrations of 100-200 mM. In a similar fashion DNA polymerase alpha is affected with respect to the activity with activated DNA as primer template. Furthermore, at concentrations of 100-200 mM acetate DNA polymerase alpha remains associated with replicating chromatin, whereas association is strongly reduced when chloride anions are used at the corresponding concentrations. Thus the salt behaviour of DNA polymerase alpha explains the salt sensitivity of the replication system. Our results confirm the importance of this enzyme for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号