首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of antioxidant and detoxifying enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase, glutathione-S-transferase (GST), the contents of thiobarbituric acid reactive substances, and the superoxide dismutase and glutathione-S-transferase isoenzyme patterns, were determined in the liver and kidney of pheasants after acute intoxication by herbicides MCPA and ANITEN I. In the liver, the activity of antioxidant enzymes was significantly decreased in the group given ANITEN I. New superoxide dismutase isoforms (pI 6.30, 6.85, 7.00) and higher intensity of isoform with pI 6.60 were observed after isoelectrofocusing in all experimental groups. In the kidney, the activity of superoxide dismutase was significantly decreased, and a higher intensity of superoxide dismutase isoforms (pI 6.00 and 6.60) was observed in all experimental groups. The contents of thiobarbituric acid reactive substances were significantly increased in the group with ANITEN I. The glutathione-S-transferase isoenzyme pattern was studied by using subunit-specific substrates and by Western blotting. The activity of glutathione-S-transferase with ethacrynic acid and cross-reactivity with rat subunit 7 was lower in all experimental groups in the kidney and liver, except in the liver of the group given a higher dose of ANITEN I. In this group, we have found a 2.10-fold higher activity to ethacrynic acid and a strong induction of subunit 7. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 235–244, 1998  相似文献   

2.
Studies have shown that reactive oxygen metabolites and lipid peroxidation play important roles in ischemia-reperfusion injury in many organs such as heart, brain and stomach. The aim of this study is to evaluate the antioxidant effect of L-carnitine on gastric mucosal barrier, lipid peroxidation and the activities of antioxidant enzymes in rat gastric mucosa subjected to ischemia-reperfusion injury. Rats were subjected to 30 min of ischemia followed by 60 min of reperfusion. L-carnitine (100 mg/kg), was given to rats intravenously five minutes before the ischemia. In our experiment, lesion index, thiobarbituric acid reactive substances, prostaglandin E2 and mucus content in gastric tissue were measured. The results indicated that the lesion index and the formation of thiobarbituric acid reactive substances increased significantly with the ischemia-reperfusion injury in the gastric mucosa. L-carnitine treatment reduced these parameters to the values of sham operated rats. The tissue catalase and superoxide dismutase activities and prostaglandin E2 production decreased significantly in the gastric mucosa of rats exposed to ischemia-reperfusion. L-carnitine pretreatment increased the tissue catalase activity and prostaglandin E2 to the levels of sham-operated rats but did not change superoxide dismutase activity. There were no significant difference in glutathione peroxidase activity and mucus content between the groups in the gastric mucosa. In summary, L-carnitine pretreatment protected gastric mucosa from ischemia-reperfusion injury by its decreasing effect on lipid peroxidation and by preventing the decrease in prostaglandin E2 content of gastric mucosa.  相似文献   

3.
Monosodium glutamate (MSG) was administrated subcutaneously for 60 days to Wistar rats and 24h rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione, superoxide dismutase and catalase were studied. MSG treatment was found to advance TBARS and to delay the acrophases of GSH and catalase. Amplitude and mesor values of these rhythms were found to be altered during MSG treatment. As glutamate levels in brain were found to be significantly increased (in MSG), we hypothesize that increased glutamate levels in brain could alter these biochemical rhythms probaly by modulating the transmission in several areas/nuclei in brain.  相似文献   

4.
The effects of hyperoxia on the status of antioxidant defenses and markers of oxidative damage were evaluated in goldfish tissues. The levels of lipid peroxides, thiobarbituric acid reactive substances, carbonyl proteins and the activities of some antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of goldfish, Carassius auratus L., over a time course of 3-12 h of hyperoxia exposure followed by 12 or 36 h of normoxic recovery. Exposure to high oxygen resulted in an accumulation of protein carbonyls in tissues throughout hyperoxia and recovery whereas lipid peroxides and thiobarbituric acid reactive substances accumulated transiently under short-term hyperoxia stress (3-6 h) but were then strongly reduced. This suggests that hyperoxia stimulated an enhancement of defenses against lipid peroxidation or mechanisms for enhancing the catabolism of peroxidation products. The activities of principal antioxidant enzymes, superoxide dismutase and catalase, were not altered under hyperoxia but catalase increased during normoxic recovery; activities may rise in anticipation of further hyperoxic excursions. In most tissues, the activities of glutathione-utilizing enzymes (glutathione peroxidase, glutathione-S-transferase, glutathione reductase) as well as glucose-6-phosphate dehydrogenase, were not affected under hyperoxia but increased sharply during normoxic recovery. Correlations between some enzyme activities and oxidative stress markers were found, for example, an inverse correlation was seen between levels of thiobarbituric acid reactive substances and glutathione-S-transferase activity in liver and catalase and glucose-6-phosphate dehydrogenase in kidney. The results suggest that liver glutathione-S-transferase plays an important role in detoxifying end products of lipid peroxidation accumulated under hyperoxia stress.  相似文献   

5.
The effects of ornithine alpha-ketoglutarate (OKG) on ammonium acetate induced hepatotoxicity were studied in experimental rats. The levels of urea, non-protein nitrogen and thiobarbituric acid reactive substances were significantly increased in ammonium acetate treated rats; but these levels were significantly decreased in ammonium acetate-OKG treated rats. Similar patterns were observed in the levels of free fatty acids, triglycerides and phospholipids. Furthermore, non-enzymatic (reduced glutathione) and enzymatic (glutathione peroxidase, superoxide dismutase and catalase) antioxidants were significantly decreased in ammonium acetate treated rats, when compared with control and were significantly increased in ammonium acetate-OKG treated rats compared to ammonium acetate treatment alone.  相似文献   

6.
To clarify the role of reactive oxygen species (ROS) in the aging process of amphibians, antioxidant enzyme activity and indexes of ROS damage were investigated biochemically using the livers of 3- and 10-year-old Rana nigromaculata frog males and females. Findings revealed no significant difference in survival rate between males and females. Antioxidant enzyme activity displayed an age-related decline. Superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activity in 10-year-old liver decreased 40-80% from 3-year-old liver levels. In contrast, urate oxidase activity in the 10-year-old liver increased more than 200% from 3-year-old liver levels. At the same time levels of ROS damage, including the concentration of inorganic peroxide and thiobarbituric acid reactive substances (TBARS), greatly increased with age. Liver catalase from 10-year-old frogs proved to be more susceptible to aminotriazole and urea, losing approximately 80% of its original activity after 30 min of treatment. It seems likely that liver catalase in older frogs has diverged from liver catalase in younger frogs through oxidative modification. These findings suggest that a decrease in the activity of antioxidant enzymes over time results in increased levels of ROS damage in the livers of older frogs.  相似文献   

7.
This study revealed the metabolic parameters of reactive oxygen species, including erythrocyte superoxide dismutase, catalase, and glutathione peroxidase activity, and oxidative stress markers, including total prooxidant activity and plasma concentration of thiobarbituric acid reactive substances, in response to 14-day interval hypoxic training (IHT). The study included healthy subjects and patients with essential hypertension, who had a decreased activity of the main antioxidant enzymes due to a marked oxidative stress, as revealed by previous studies. In all subjects, the oxidative stress markers decreased and the enzyme activity increased in four days after the IHT course. However, the differences in metabolism of the reactive oxygen species between the patients and the healthy subjects persisted. It is suggested that, even with a different antioxidant enzyme system baseline, IHT may contribute to adaptive activity of this system.  相似文献   

8.
In the present study, the nephroprotective effect of gallic acid isolated from Peltiphyllum peltatum was examined in sodium fluoride (NaF) treated rats. Nephrotoxicity was induced by 1-week intoxication of NaF at 600 ppm through drinking water. The levels of thiobarbituric acid reactive substances, reduced glutathione as well as activities of superoxide dismutase and catalase in renal tissues homogenates were determined. The serum biochemical markers of renal injuries including creatinine, serum urea, blood urea nitrogen, uric acid levels as well as the levels of phosphate and calcium were also assessed. Intoxication with NaF caused a significant increase in the levels of thiobarbituric acid reactive substances (46 % versus to control) and reduced the glutathione concentration (47 %) and the activities of superoxide dismutase (46 %) and catalase (41 %) in renal tissues homogenates. NaF intoxication also induced significant alterations in the kidney biochemical markers increasing the levels of urea, uric acid, blood urea nitrogen, creatinine, and phosphate and decreasing the levels of calcium. Daily administration of gallic acid (20 mg/kg) for 1 week before NaF intoxication brought the antioxidant–oxidant balance similar to the NaF-untreated group. Silymarin, used a standard antioxidant agent, also showed a nephroprotective activity. We concluded that NaF caused nephrotoxicity and oxidative stress in renal tissues and daily administration of gallic acid for 1 week prior to intoxication inhibited toxicity and oxidative stress.  相似文献   

9.
Metabolic syndrome (MS) is associated with occurrence of the many cardiovascular risk factors such as atherogenic dyslipidemia, visceral fat distribution, arterial hypertension and pro-thrombotic and pro-inflammatory status. In our study the effect of disorders that appear in MS on red-ox balance and erythrocyte cell membrane properties were estimated. The study comprised 50 patients with diagnosed MS and in 25 healthy subjects. Content of thiobarbituric acid reactive substances (TBARS) and catalase, superoxide dismutase and glutathione peroxidase activity were estimated in red blood cells. Moreover, conformation status of membrane proteins, membrane fluidity and osmotic fragility were evaluated. MS was found to manifest: (1) the increase of the concentration of TBARS in erythrocytes with no statistically significant differences in antioxidant enzymes activity, (2) disorders in the structure of erythrocyte cytoskeleton proteins, (3) the increase in membrane lipids fluidity at the depth of 5th and 12th carbon atom of fatty acid hydrocarbon chain and significantly decreased fluidity at the depth of 16th carbon atom, (4) increased erythrocyte osmotic fragility.  相似文献   

10.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

11.
The effects of alpha-ketoglutarate on ammonium acetate induced hyperammonemia were studied biochemically in experimental rats. The levels of circulatory, non-protein nitrogen, serum transaminases and thiobarbituric acid reactive substances were significantly increased in ammonium acetate treated rats. These levels were significantly decreased in alpha-ketoglutarate and ammonium acetate treated rats. Similar patterns of alterations were observed in the levels of free fatty acids, triglycerides, phopholipids and cholesterol inbetween various groups. Further non-enzymatic (vitamins C and E) and enzymatic (superoxide dismutase and catalase) antioxidants were significantly decreased in ammonium acetate treated rats; and were significantly increased in alpha-ketoglutarate and ammonium acetate treated rats. The biochemical alterations during alpha-ketoglutarate treatment could be due to (i) the detoxification of excess ammonia, (ii) by participating in the non-enzymatic oxidative decarboxylation in the hydrogen peroxide decomposition process and (iii) by enhancing the proper metabolism of fats which could suppress oxygen radicals generation and thus prevent the lipid peroxidative damages in rats.  相似文献   

12.
We evaluated oxidative stress associated with a model of experimental epilepsy. Male Wistar rats were injected i.p. with 150 mg/kg convulsant 3-mercaptopropionic acid and decapitated in two stages: during seizures or in the post-seizure period. Spontaneous chemiluminescence, levels of thiobarbituric acid reactive substances, total antioxidant capacity and antioxidant enzyme activities were measured in cerebellum, hippocampus, cerebral cortex and striatum. In animals killed at seizure, increases of 42% and 90% were observed in spontaneous chemiluminescence of cerebellum and cerebral cortex homogenates, respectively, accompanied by a 25% increase in cerebral cortex levels of thiobarbituric acid reactive substances. In the post-seizure stage, emission completely returned to control levels in cerebral cortex and partly in cerebellum, thus showing oxidative stress reversibility in time. Hippocampus and striatum seemed less vulnerable areas to oxidative damage. A 30% decrease in glutathione peroxidase activity was only observed in cerebral cortex during seizures, while catalase and superoxide dismutase remained unchanged in all four areas during either stage. Likewise, total antioxidant capacity was unaffected in any of the studied areas. It is suggested that oxidative stress in this model of epilepsy arises from an increase in oxidant species rather than from depletion of antioxidant defences.  相似文献   

13.
Radioactive secondary autoxidation products of linoleic acid were administered orally to rats and the incorporation of radioactive substances into lipids was investigated in the liver. The radioactive substances were significantly incorporated into hepatic mitochondrial and microsomal lipids 12 h after the administration. 80% of the radioactivity in mitochondria was detected in neutral lipids. The radioactivity in microsomal neutral lipids significantly decreased and the activity in phospholipids increased 12 h after the administration. On the other hand, contents of lipid peroxide and thiobarbituric acid reactive substances in liver were significantly increased by 40% at 15 h after the administration of the secondary autoxidation products. Activity of marker enzymes used for an indication of the hepatic injury was also elevated. Glutathione peroxidase activity increased 3-fold and catalase activity increased 1.5-fold. Activity of mitochondrial NAD-dependent aldehyde dehydrogenase, however, was decreased by 50%. It seems likely that the secondary autoxidation products orally administered are detoxified in the hepatic mitochondria, metabolized to neutral lipids, and further metabolized to phospholipids in microsomes, while as the incorporated secondary autoxidation products induces hepatic injury by lipid peroxidation.  相似文献   

14.
A study was undertaken to evaluate the anti-lipid peroxidative activity of an aqueous extract of A. marmelos fruits (AMFEt) in streptozotocin diabetic rats in heart and pancreas. Oral administration of AMFEt for 30 days (125 and 250 mg kg(-1) body weight twice daily) produced a significant decrease in the elevated levels of peroxidation products, viz. thiobarbituric acid reactive substances and hydroperoxides in the tissues of diabetic rats. The depressed activities of superoxide dismutase, catalase and glutathione peroxidase and lowered glutathione content in the heart and pancreas of diabetic rats were found to increase on treatment with AMFEt. AMFEt at a dose of 250 mg kg(-1) was more effective than glibenclamide (300 microg kg(-1)) and both reversed all the values significantly. Thus AMFEt exhibits anti-oxidative activity in streptozotocin diabetic rats.  相似文献   

15.
The content of lipid peroxidation products--diene conjugates, lipid hydroperoxides, thiobarbituric acid reactive substances (TBARS), vitamins A, E and carotenoids and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in the liver of freshwater fishes of different species (silver carp, grass carp and common carp) in different seasons have been studied. It was established the activity of antioxidant defence system in the liver of fish depends significantly on the season and fish species. In particular, the content of lipid peroxidation products in the liver of freshwater fishes at the beginning of winter and spring was significantly higher compared to their content at the beginning of summer and autumn. The superoxide dismutase and glutathione peroxidase activities in the liver of these fish species at the beginning of winter and spring were significantly lower than at the beginning of summer and autumn while the seasonal changes of catalase activity in the liver of fish are expressed insignificantly. The content of vitamins E, A1, A2 and carotenoids in the liver of fishes of different species at the beginning of winter and spring was significantly lower than at the beginning of summer and autumn. The content of lipid peroxidation products and vitamins E, A1 and A2 in the liver of common carp is significantly lower than in the liver of silver carp and grass carp and species differences in antioxidant enzymes activity are insignificant.  相似文献   

16.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

17.
《Free radical research》2013,47(4-5):221-226
Consumption of excess methionine by rats is known to cause membrane damage, liver enlargement and accumulation of iron in the spleen. In this study two groups (n = 5) of male, Wistar rats were pair-fed either a methionine supplemented (20.0 g/kg) or control (2.0 g/kg) diet for 7 weeks. Hepatic and erythrocyte copper-zinc superoxide dismutase activities were significantly reduced (P < 0.05 and P < 0.001 respectively) by methionine supplementation while the activities of catalase (P < 0.01 and 0.05) and glutathione peroxidase (P < 0.05) were significantly increased. Methionine supplementation also increased hepatic lipid peroxidation (P < 0.01), as measured by the level of thiobarbituric acid reactive substances, and iron (P < 0.001) concentrations. These changes are indicative of increased oxidative stress resulting from methionine toxicity.  相似文献   

18.
Abscisic acid (ABA) and salicylic acid (SA) were sprayed on leaves of wheat genotypes C 306 and Hira at 25 and 40 d after sowing under moderate water stress (−0.8 MPa) imposed by adding PEG-6000 in nutrient solution. ABA and SA increased the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in comparison to unsprayed control plants. Both ABA and SA treatments decreased the contents of hydrogen peroxide and thiobarbituric acid reactive substances, a measure of lipid peroxidation, compared to unsprayed plants. The beneficial effect of increase in antioxidant enzymes activity and decrease in oxidative stress was reflected in increase in chlorophyll and carotenoid contents, relative water content, membrane stability index, leaf area and total biomass over control plants. The lower concentrations of ABA (0.5 mM) and SA (1.0 mM) were generally more effective than higher concentrations.  相似文献   

19.
The glycoprotein isolated from Ulmus davidiana Nakai (UDN) (UDN glycoprotein) has a molecular weight of 116 kDa and consists of 78.65% carbohydrate content and 21.35% protein content. In the present study, we investigated the hypolipidemic effect of UDN glycoprotein on Triton WR-1339-induced mice. With pretreatment with UDN glycoprotein, the triacylglycerol (TAG), total cholesterol and low density lipoprotein-cholesterol (LDL-C) concentrations were significantly reduced, whereas high density lipoprotein-cholesterol (HDL-C) concentration was increased in the plasma of Triton WR-1339-induced mice. With respect to antioxidative activity, UDN glycoprotein significantly decreased the level of thiobarbituric acid reactive substances (TBARS) and improved activities of catalase and glutathione peroxidase (GPx), without an apparent change of superoxide dismutase (SOD) activity. Also UDN glycoprotein significantly increased nitric oxide (NO) production in Triton WR-1339-induced mice. These results indicate that UDN glycoprotein has a hypolipidemic effect, possesses antioxidant activity and has an ability to stimulate NO production. Thus, we speculate that UDN glycoprotein is an example of natural compound that lowers plasma lipid level together with having an antioxidant function in Triton WR-1339-induced mice.  相似文献   

20.
Influence of age on arsenic-induced (0.05, 0.1, and 0.2 lethal dose to 50?% population (LD50) given intraperitoneally) oxidative stress was investigated in young, adult, and old rats at days?7 and 14 post-exposure. A significant dose-dependent effect of arsenic on biochemical variables suggestive of oxidative stress was noted at day?7 following exposure in old rats. The parameters which were significantly altered include an increased reactive oxygen species, thiobarbituric acid reactive substances (TBARS), catalase activity accompanied by a decreased glutathione level. At day?14 following arsenic exposure (0.05 and 0.1 LD50 dose), we observed a significant oxidative injury as evident from significant depletion of superoxide dismutase (SOD) and catalase activities in blood and tissues in addition to more pronounced accumulation of arsenic in blood and tissues. Interestingly, the toxicity was pronounced in young and old rats compared with adult rats. Accumulation of arsenic found to be more prominent in old rats compared with young and adult, which might be due to impaired metabolism with ageing. We conclude that young and old animals are more vulnerable to the arsenic-induced oxidative injury which is comparable with arsenic accumulation in blood and tissues and duration of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号