首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this report, we demonstrated that peripheral application of very low dose (amol ranges) of morphine induced flexor response through a substance P (SP) release at the nociceptor endings in mice. The intraplantar (i.pl.) application of morphine produced flexor response in a dose-dependent manner from 0.1 to 1000amol. The mu-opioid receptor (MOP-R) agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) also produced dose-dependent flexor response in same dose ranges. Morphine-induced flexor responses were markedly inhibited by naloxone and D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP) both MOP-R antagonists and by intrathecal injection of antisense oligodeoxynucleotide (AS-ODN) for MOP-R which is expected to reduce the receptor expression in sensory nerve endings. Prior incubation with capsaicin, a depletor of SP from polymodal C fibers and [(+)-(2S,3S)-(2-methoxybenzylamino)-2-phenylpiperidine] (CP-99994), a tachykinin 1 receptor antagonist, also blocked the morphine-induced flexor responses. Moreover, pertussis toxin (PTX) which inactivates G(alpha)(i/o); [(1-[6-([(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino)hexyl]-1H-pyrrole-2,5-dione)] (U-73122), an inhibitor of phospholipase C (PLC); ethyleneglycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), a Ca(2+) chelating agent; xestospongin C, a membrane-permeable inositol trisphosphate (InsP(3)) receptor antagonist inhibited the morphine-flexor responses. However, thapsigargin, a depletor of intracellular Ca(2+) concentration and diphenhydramine, a histamine (His) H1 receptor antagonist, were unable to block the morphine-induced flexor responses. These results suggest that extremely low doses of morphine can stimulate sensory nerve endings through activation of peripheral MOP-R and its downstream mechanisms include activation of PLC through a SP release from polymodal C fibers.  相似文献   

2.
Abstract: In [3H]myristic acid-prelabeled Chinese hamster ovary cells stably expressing the rat NK1 tachykinin receptor, the selective NK1 agonist [Pro9]substance P ([Pro9]SP) time and concentration dependently stimulated the formation of [3H]phosphatidylethanol in the presence of ethanol. This [Pro9]SP-induced activation of phospholipase D (PLD) was blocked by NK1 receptor antagonists and poorly or not mimicked by NK2 and NK3 agonists, respectively. In confirmation of previous observations, [Pro9]SP also stimulated the hydrolysis of phosphoinositides, the release of arachidonic acid, and the formation of cyclic AMP (cAMP). All these [Pro9]SP-evoked responses could be mimicked by aluminum fluoride, but they remained unaffected in cells pretreated with pertussis toxin, suggesting that a Gi/Go protein is not involved in these different signaling pathways. The activation of PLD by [Pro9]SP was sensitive to external calcium and required an active protein kinase C because the inhibition of this kinase (Ro 31-8220) or its down-regulation (long-term treatment with a phorbol ester) abolished the response. In contrast, a cAMP-dependent process was not involved in the activation of PLD because the [Pro9]SP-evoked response was neither affected by Rp-8-bromoadenosine 3′,5′-cyclic monophosphorothioate nor mimicked by cAMP-generating compounds (cholera toxin or forskolin) or by 8-bromo-cyclic AMP. A functional coupling of NK1 receptors to PLD was also demonstrated in the human astrocytoma cell line U 373 MG stimulated by SP or [Pro9]SP. These results suggest that PLD activation could be an additional signaling pathway involved in the mechanism of action of SP in target cells expressing NK1 receptors.  相似文献   

3.
Abstract— In the human astrocytoma cell line U 373 MG, application of substance P (SP) leads to a transient increase in cytosolic calcium concentration and to a biphasic current response in voltage-clamped cells. Using these two functional assays we have characterized pharmacologically the SP response in U 373 MG cells. SP and [l -Pro9]SP displayed high potencies in both assays with EC50values of 2.5 ± 10?9M and 1 ± 10?9M on calcium responses and 110?9M and 510?9M on ion current responses, respectively. The high potency of SP and [l -Pro9]SP as well as the low potency of [Lys5,MeLeu9,N-Leu10]neurokinin A(4-10) and the inactivity of senktide demonstrate the NK1-type pharmacology of these responses. Furthermore, the NK1 antagonists (±)-CP 96,345, its chloro analogue, (±)-cis-3-(2-chlorobenzylamino)-2-benz-hydrylquinuclidine, and RP 67580 were potent antagonists of both SP responses. For the calcium mobilization induced by SP (1 (10?7M), the IC50 values for the three antagonists were 4 ± 10?10M, 4 ± 10?9M, and 9 ± 10?9M, respectively, whereas on the current response evoked by SP 10?8M), the IC50 values were 8 ± 10?9M, 2.4 ± 10?8M, and 1.2 10?7M, respectively. Despite differences in the absolute IC50 values obtained with both techniques, the relative potencies of the three antagonists correlate fairly well. The U 373 MG cell line provides a useful model system for studies of the pharmacology of the human NK1receptor and its transduction mechanisms at the level of second messengers and modulation of ion currents.  相似文献   

4.
The levels of indole-acetic acid (IAA), gibberellic acid1 (GA1), trans-zeatin (Z) and trans-zeatin riboside (ZR) in seedless fruits of parthenocarpic tomato (Lycopersicon esculentum Mill. cv. Rarkuna First) were analysed using 13C6-IAA, 2H2-GA1, 2H5-Z and 2H5-ZR, as internal standards by liquid chromatography–mass spectrometry. Fruits were sampled at 6 cm in diameter (referred to as 6-cm-fruit) and 8 cm (8-cm-fruit, mature green stage) and separated into pericarps, partitions and locule tissues. The pericarps and partitions were centrifuged for the collection of apoplast (AP) solution (sap outside a cell) and symplast (SP) solution (sap within a cell). IAA concentrations of the pericarps and partitions were higher in 8-cm-fruit than in 6-cm-fruit. In the partitions, IAA concentrations of SP solution were higher than those of AP solution in both 6- and 8-cm-fruit. The SP solution of the partitions in 6-cm-fruit had the highest concentration of Z (4.6 pmol/g fresh weight) and was 2.7 times than the AP solution, while in the pericarps Z concentrations were the same level in AP and SP solution. The ZR concentration in locule tissues in 6-cm-fruit (55 pmol/g fresh weight ) was the highest of all parts. The results suggest that the sites of synthesis may be the SP of partitions for IAA and Z, and locules for ZR.  相似文献   

5.
Pekin ducks (Anas platyrhynchos) were bilaterally adrenalectomized (biADX), injected with 1 mg of triamcinolone (TRIAM) kg bw−1 im and given 0.9% saline drinking water during a 24 h recovery period followed by chemical sympathectomy with 6OH DOPA 3 h before the start of experimental observations. Baseline plasma dopamine (DA) concentrations decreased from 283 ± 88.5 pmol ml−1 to 42.4 ± 11.1 pmol ml−1; epinephrine (E) from 142 ± 46 pmol ml−1 to 18.4 ± 9.2 pmol ml−1 and norepinephrine (NE) from 742 ± 84 pmol ml−1 to 406 ± 38 pmol ml−1 1 day after biADX + TRIAM but before chemical sympathectomy. Baseline MABP increased from 132 ± 3.2 mmHg to 209 ± 14.3 mmHg (P < 0.05) in response to TRIAM. After chemical sympathectomy with 6OH DOPA there was an additional 90% decrease in plasma NE to 42 ± 9.4 pmol ml−1 and a concurrent 60% decrease in MABP to 83.4 ± 6.9 mmHg (P < 0.05). Nasal fluid secretion was maintained by the continuous infusion of hypertonic saline (1,000 mosmol kg H2O−1 at a rate of 0.3 ml kg−1 min−1). Rates of nasal fluid secretion and fluid electrolyte concentrations were unchanged following biADX + TRIAM + 6OH DOPA. Angiotensin II (ANG II; dose 1 μg kg bw−1 i.v.), attenuated nasal fluid secretion showing that the response to ANG II was not NE- dependent. Plasma NE concentrations decreased following Tyramine i.v. (33 ± 8.5 pmol ml−1) there being no vasopressor response. This is the first report of the ANG II induced attenuation of duck salt gland secretion in the absence of measurable E and NE.  相似文献   

6.
Abstract

Saturation experiments were performed on intact human peripheral mononuclear leucocytes (MNL) and MNL membranes with (-)125Iodocyanopindolol (125ICYP) over a large concentration range (1.5-600pmol/l). The corresponding Scatchard plots were curvilinear suggesting two saturable classes of binding sites: A high affinity binding site (Bmax1=1000±400 sites/cell, Kd1= 2.1±0.9 pmol/l for intact MNL and Bmax1=550±190 sites/cell, Kd1=4.1±0.9 pmol/l for MNL membranes)and a low affinity binding site (Bmax2=9150±3590 binding sites/cell, Kd2=440±50 pmol/l for intact MNL and Bmax2=11560±4690 sites/cell, Kd2=410±70 pmol/l for MNL membranes). Dissociation of (-)125ICYP from MNL was biphasic consisting of a slow dissociating component (dissociation rate constant k-1=(0.5±0.2)x10?3 min?1 for intact MNL and k-1=(1.0±0.1)x10?3min?1 for MNL membranes) and a fast dissociating component (k-2=(80±20)x10?3min?1 for intact MNL and k-2=(60±10)x10?3min?1 for MNL membranes). In dissociation experiments started after equilibration with various (-)125ICYP concentrations k-1 and k-2 were independent of the equilibrium concentration, whereas the percentual occupancy of the slow and the fast dissociating component varied and was similar to the estimated fractional occupancy of either binding site at the same (-)125ICYP concentrations in saturation experiments. The association rate constant was in the same order of magnitude for both binding sites. These results suggest two independent classes of binding sites for (-)125ICYP on MNL.  相似文献   

7.
Abstract: Substance P (SP) and SP analogues, including C-terminal, N-terminal, and C-terminus-extended analogues, have been investigated for their ability to modulate nicotine-induced secretion from bovine adrenal chromaffin cells in culture. Secretion was monitored by measuring the release of endogenous catecholamines by electrochemical detection following separation on HPLC and the release of endogenous ATP with an on-line luciferin-luciferase bioluminescence technique. SP is known to have the following two effects on nicotine-induced secretion of catecholamines (see Livett and Zhou, 1991): inhibition of the nicotinic response and protection against nicotinic desensitization. Secretion induced by 10-5M nicotine was inhibited 70-80% by SP, SP-methyl ester, and the C-terminus-extended analogue SP-Tyr12-NH2, 65% by (Ala3)SP-NH2, 45% by the C-terminal analogue SP(4-11), and 20 and 5% by the N-terminal analogues SP(1-7) and SP(1-5), respectively, when these peptides were present at 3 ×; 10-5M concentrations. The order of potency was SP = SP-methyl ester = SP-Tyr12-NH2 > (Ala3)SP-NH2 > SP(4-11) > SP(1-7) > SP(1-5). SP, SP-methyl ester, and (Ala3)SP-NH2 protected against nicotinic desensitization by 40-55%, and SP(4-11) protected by 20% (all at 3 ×; 10-5M). In contrast, the N-terminal analogues SP(1-7) and SP(1-5) and the C-terminus-extended analogue SP-Tyr12-NH2 at 3 × 10-5M did not protect against nicotinic desensitization. Cyclo-SP(3-9), Ac-SP(3-9)-NH2, SP(3-9), and SP(3-6) had neither inhibitory nor facilitatory effects on secretion. Of the 20 SP analogues extended at the C terminus by one amino acid, there were only three that protected against nicotinic desensitization, whereas the majority inhibited nicotine-evoked catecholamine secretion. The present work indicates that for inhibition of nicotine-evoked secretion, both the C terminus and N terminus of SP are necessary. For the protection against nicotine-induced desensitization, the C terminus of SP is important. This suggests that the two mechanisms, inhibition of nicotine-evoked secretion and protection against nicotinic desensitization, are regulated independently.  相似文献   

8.
Abstract

Stimulation of human H1 and H2‐histamine receptors (HRs) primarily activates signaling pathways to increase intracellular calcium [Ca2+]i and cyclic AMP (cAMP), respectively. Activation of H2‐HR in human embryonic kidney (HEK) cells by histamine and dimaprit increases both cAMP formation and [Ca2+]i, as determined by cAMP‐scintillation proximity assays and fluorescence imaging plate reader (FLIPR) assays. In HEK cells expressing relatively high levels of H2‐HR (Bmax = 26 pmol/mg protein), histamine and dimaprit are full agonists in eliciting cAMP responses with pEC50 values of 9.30 and 7.72 that are 1000‐fold more potent than their respective pEC50 values of 6.13 and 4.91 for increasing [Ca2+]i. The agonist potencies decrease for both responses at lower H2‐HR density (5 pmol/mg protein) and dimaprit exhibits partial agonist behavior for the [Ca2+]i response. The inverse agonists ranitidine and cimetidine more potently inhibit cAMP production in the higher expressing H2‐HR line. Histamine also activated both signaling pathways via human H1‐HRs highly expressed (Bmax = 17 pmol/mg protein) in HEK cells, with a 1000‐fold greater potency for [Ca2+]i vs. cAMP responses (pEC50 = 7.86 and 4.82, respectively). These studies demonstrate a markedly different potency for activation of multiple signaling pathways by H1‐ and H2‐HRs that may contribute to the selectivity of histamine responses in vivo.  相似文献   

9.
The psychostimulant methamphetamine (METH) is an addictive drug of abuse. The neuropeptide oxytocin has been shown to modulate METH-related reward and METH-seeking behaviour. Recent findings implicated the subthalamic nucleus (STh) as a key brain region in oxytocin modulation of METH-induced reward. However, it is unclear if oxytocin acts in this region to attenuate relapse to METH-seeking behaviour, and if this action is through the oxytocin receptor. We aimed to determine whether oxytocin pretreatment administered into the STh would reduce reinstatement to METH use in rats experienced at METH self-administration, and if this could be reversed by the co-administration of the oxytocin receptor antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae into the STh under isoflourane anaesthesia. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour sessions under a fixed ratio 1 schedule for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.2 pmol, 0.6 pmol, 1.8 pmol, 3.6 pmol) or co-administration of oxytocin (3.6 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (3 nmol) into the STh (200 nl/side) was examined on METH-primed reinstatement (1 mg/kg; i.p.). We found that local administration of the highest oxytocin dose (3.6 pmol) into the STh decreased METH-induced reinstatement and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT had a non-specific effect on lever press activity. These findings highlight that oxytocin modulation of the STh is an important modulator of relapse to METH abuse.  相似文献   

10.
A new method to measure 1J(Ni,C i) and 2J(Ni,C (i – 1)) coupling constants in proteins based on a J-modulated sensitivity enhanced HSQC was introduced. Coupling constants were measured in the denatured and in the native state of ubiquitin and found to depend on the conformation of the protein backbone. Using a combined data set of experimental coupling constants from ubiquitin and staphylococcal nuclease (Delaglio et al., 1991), the angular dependence of the coupling constants on the backbone angles and was investigated. It was found that the size of 2J(Ni,C (i – 1)) correlates strongly with the backbone conformation, while only a weak conformational dependence on the size of 1J(Ni,C i) coupling constants was observed. Coupling constants in the denatured state of ubiquitin were uniform along the sequence of the protein and not dependent on a given residue type. Furthermore it was shown that the observed coupling constants were in good agreement with predicted coupling constants using a simple model for the random coil.  相似文献   

11.
Abstract

Two types of ligand-gated ion channels were expressed with the Semliki Forest virus (SFV) expression system.The cDNAs for mouse serotonin 5-HT3 receptor and rat and human purinoreceptor P2x subtypes were introduced into the pSFV1 vector. In vitro transcribed RNAs were coelectroporated with pSFV-Helper2 RNA into BHK cells, where in vivo packaging resulted in high titer SFV-5-HT3 and SFV-P2x virus stocks. Infection of BHK, CHO and RJN cells resulted in high-level expression of recombinant receptors. Saturation binding analysis indicated the presence of more than 3 × 106 5-HT3 receptors per cell. Binding studies on isolated membranes yielded from 10 to 60 pmol of either 5-HT3 or P2x receptor per mg protein. Functional responses to the P2x receptors were demonstrated in SFV-infected CHO cells by Ca2+ mobilization or by 45Ca2+ influx. High amplitude electrophysiological responses were also detected for both SFV-5-HT3 and SFV-P2x infected CHO cells in whole-cell patch clamp recordings. To facilitate the purification procedure of SFV-expressed recombinant receptors a histidine tag was introduced at the C-terminus of the 5-HT3 receptor. This 5-HT3His receptor showed high levels of expression, specific binding and high amplitude electrophysiological responses. For large scale expression the BHK cells were adapted to suspension culture and were efficiently infected in a 11.5 liter fermentor culture with SFV-5-HT3His resulting in high-level expression, 52 pmol receptor per mg protein corresponding to 3.2 × 106 receptors per cell.  相似文献   

12.
Summary Neuropeptide tachykinins, present within sensory nerves, have been implicated as neurotransmitters involved in nonadrenergic and noncholinergic airway muscle contraction. The signal transduction pathways of tachykinins on muscle contraction and Ca2+ mobilization were investigated in swine trachea. Tachykinins, substance P (SP) and neurokinin A (NKA), concentration (1 nM to 1 μM)-dependently induced contractile responses with removal of epithelium, whereas neurokinin B (NKB) did not alter the muscle tension. The SP- and NKA-evoked muscle contractions were inhibited by NK1-R antagonist L732138, but not by either NK2-R antagonist MDL29913 or NK3-R antagonist SB218795. Consistently, SP-elicited increase in [Ca2+]i was abolished by NK1-R antagonist, neither by NK2-R nor NK3-R antagonists. The SP-induced muscular responses were significantly inhibited by L-type Ca2+ channel blocker verapamil and withdrawal of external Ca2+. Caffeine (10 mM) or ryanodine (50 μM) also partly suppressed the SP-induced muscle responses. Inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor with 2-APB (75 μM) potently attenuated SP-evoked Ca2+ mobilization and muscle contraction, which was further inhibited by 2-APB under Ca2+-free external solution, but not completely. Unexpectedly, simultaneous blockade of InsP3 receptor and ryanodine receptor (RyR) by 2-APB and ryanodine enhanced SP-evoked muscle contraction and Ca2+ mobilization. This potentiation was virtually abolished by removal of external Ca2+, suggesting native Ca2+ channels may contribute to this phenomenon. These results demonstrate that tachykinins produce a potent muscle contraction associated with Ca2+ mobilization via tachykinin NK1- R-dependent activation of multiple signal transduction pathways involving Ca2+ influx and release of Ca2+ from InsP3- and ryanodine-sensitive Ca2+ stores. Blockade of both InsP3 receptor and RyR enhances the Ca2+ influx through native Ca2+ channels in plasma membrane, which is crucial to Ca2+ signaling in response to NK1 receptor activation.  相似文献   

13.
《Life sciences》1994,54(24):PL451-PL456
We investigated the involvement of α1-adrenoceptor subtypes in the positive chronotropic response to norepinephrine (NE) in neonatal rat cardiac myocytes at day 3 of culture. The cardiac myocytes at day 3 of culture exhibited a dose-dependent positive chronotropic response to NE in the presence of propranolol, a β-adrenoceptor antagonist. The positive chronotropic responses to NE were completely antagonized by the α1-adrenoceptor antagonist prazosin. The NE-induced positive chronotropic response was inhibited 68% by the α1B-adrenoceptor antagonist, chloroethylclonidine (CEC), but partially (41%) so by the α1A-adrenoceptor antagonist, WB4101. In the membrane fraction derived from cardiac myocytes at day 3 of culture, pretreatment with CEC decreased the Bmax of the α1-adrenoceptor to 22% of the control value. The NE-induced positive chronotropic response was inhibited 62 and 77% by the voltage-gated Ca2+ channel blocker such as nifedipine and verapamil, respectively. These findings indicate (1) that cultured neonatal rat cardiac myocytes possess both α1-adrenoceptor subtypes, i.e., α1A and α1B, (2) that the predominant α1-adrenoceptor subtypes mediating NE-induced positive chronotropy in neonatal rat cardiac myocytes at day 3 of culture are α1B-subtypes, and (3) that NE-induced positive chronotropy may be caused via voltage-gated Ca2+ channel activation.  相似文献   

14.
The purpose of this study was threefold: i) to analyse the load-velocity relationship of the shoulder press (SP) exercise, ii) to investigate the stability (intra-individual variability) of this load-velocity relationship for athletes with different relative strength levels, and after a 10-week velocity-based resistance training (VBT), and iii) to describe the velocity-time pattern of the SP: first peak velocity [Vmax1], minimum velocity [Vmin], and second peak velocity [Vmax2]. This study involves a cross-sectional (T1, n = 48 subjects with low, medium and high strength levels) and longitudinal (T2, n = 24 subjects randomly selected from T1 sample) design. In T1, subjects completed a progressive loading test up to the 1RM in the SP exercise. The barbell mean, peak and mean propulsive velocities (MV, PV and MPV) were monitored. In T2, subjects repeated the loading test after 10 weeks of VBT. There were very close relationships between the %1RM and velocity attained in the three velocity outcomes (T1, R2: MV = 0.970; MPV = 0.969; PV = 0.954), being even stronger at the individual level (T1, R2 = 0.973–0.997). The MPV attained at the 1RM (~0.19 m·s-1) was consistent among different strength levels. Despite the fact that 1RM increased ~17.5% after the VBT programme, average MPV along the load-velocity relationship remained unaltered between T1 and T2 (0.69 ± 0.06 vs. 0.70 ± 0.06 m·s-1). Lastly, the three key parameters of the velocity-time curve were detected from loads > 74.9% 1RM at 14.3% (Vmax1), 46.1% (Vmin), and 88.7% (Vmax2) of the concentric phase. These results may serve as a practical guideline to effectively implement the velocity-based method in the SP exercise.  相似文献   

15.
Abstract: Stimulation of rat parotid acinar cells by the tachykinin neurokinin (NK) 1 receptor agonist substance P (SP) resulted in a significant reduction in the initial accumulation of cytosolic myo-[3H]inositol. This effect was rapid, because a reduction of ~15% could be seen already at 30 s, with the maximal effect (~45%) being observed at 15 min. The response to SP stimulation Was temperature dependent, because at 4°C no reduction was found, jln addition, at 4°C, cytosolic myo-[3H]inositol represented only 10% of the labeled inositol accumulated at 37°C. The SP-induced reduct on in cytosolic ravo[3H]inositol accumulation was concentration dependent; the EC50 obtained for SP was 5.8 ± 2.5 nM. Spantide [N Arg1, D-Trp79, Leu]SP), a SP antagonist, used at a concentration oif 105 A/, gave a competitive shift of the dose-response curve to SP. Various tachykinins and their analogs were evaluated for their ability to reduce cytosolic mvo-[3H]inositol. [L-Pro9]SP and SP methyl ester, two highly selective agonists of NK1 receptors, reduced the initial accumulation of myo-H]inositol with EQo values of 2.3 and 67.0 nM, respectively. Long SP C-terminal fragments were more potent than shorter ones. SP N-terminal fragments and SP free acid were -without effect. [Pro7]NKB, a selective NKB analog, had no effect. The rank order of potency of mammalian tachykinins was SP > NKA > NKB. These findings and the close correlation between EC50 values and IC50 values obtained in binding studies implicate the NK 1 receptor. In addition, stimulation of muscarinic receptors by carbachol alscp resulted in a reduction in level of cytosolic mjw-[3H]inositol, with this effect being reversed by atropine. Moreover, atropine was unable tjo alter the SP-induced reduction in cytosolic myo-[3H]inositol accumulation. Other neurotransmitters, such as glutamic acid, serotonin, chplecystokinin, neurotensin, bradykinin, and neuropeptide Y, were without effect on initial cytosolic myo-[3H]inositol accumulation. In conclusion, NK1 and muscarinic receptors seem to regulate the membrane transport of inositol in acinar cells of the rat parotid gland. Measurement of the initial accumulation of cytosolic myo-[3H]inositol in this tissue could profitably be adopted as a very simple, rapid, [sensitive, and specific biochemical procedure for screening the activity of potential agonists and antagonists at NK1 receptors.  相似文献   

16.
N Taira  A Narimatsu  S Satoh 《Life sciences》1975,17(12):1869-1875
Prostaglandin F (PGF) (3–300 pmol) administered to the dog mandibular gland via the glandular artery produced salivation and an increase in blood flow rate in a dose-related manner. The salivary responses to PGF and to electrical stimulation of the chorda-lingual nerve were abolished by intra-arterial infusion of 1-hyoscymine (30 nmol/min), whereas the vascular responses to both were not affected. The salivary and vasodilator responses to PGF were not affected by intra-arterial infusion of hexamethonium (0.6–2 μmol/min) which abolished those to stimulation of the chordalingual nerve. These results support the prevous conclusion that PGF produces the two responses by exciting the parasympathetic ganglion or postganglionic neurons in the dog mandibular gland.  相似文献   

17.
The substance P (SP) analogues [DArg1, DPhe5, DTrp7,9, Leu11] SP (AntD) and [Arg6, DTrp7,9, MePhe8] SP (6–11) (AntG) inhibit the action of many different neuropeptides including SP. These analogues might be useful in the treatment of small cell lung cancer but their mechanism of action is unclear. Here, we analyzed the effect of AntD and AntG on neuropeptide vs. guanosine 5′-3-O-(thio) triphosphate (GTPγS) stimulated inositol phosphate generation in permeabilized Swiss 3T3 cells. AntD inhibited vasopressin and bombesin stimulated inositol phosphate formation (IC50 of 0.75 μM and 2 μM, respectively). Similarly, AntG inhibited vasopressin-stimulated inositol phosphate generation with an IC50 of 1 μM. Strikingly, neither AntD up to 10 μM nor AntG up to 20 μM was able to inhibit GTPγS-stimulated inositol phosphate generation. Dose-response curves of neuropeptide-induced inositol phosphate generation were dramatically displaced to the right by either 10 μM AntD or 20 μM AntG. However, neither antagonist affected the dose response of GTPγS-stimulated inositol phosphate generation. Furthermore, 20 μM AntD had no effect on AIF?4-induced inositol phosphates in COS-1 cells transfected with Gαq. AntD inhibited [3H]vasopressin binding competitively in intact Swiss 3T3 cells and both AntD and AntG inhibited [3H]vasopressin binding in Swiss 3T3 and rat liver membranes. Scatchard analysis revealed that AntD inhibited vasopressin binding by reducing receptor affinity without affecting receptor number in both intact and membrane preparations of Swiss 3T3 cells. The results strongly suggest that SP analogues AntD and AntG block the action of the Ca2+ mobilizing neuropeptides at the receptor level, rather than inhibiting G protein-stimulated inositol phosphate production. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The binding of (1)-[3H]vesamicol was characterized in several subcellular fractions and brain regions of the rat. Binding to a lysed P2 fraction from the rat cerebral cortex reached equilibrium within 4 min at 37°C and was reversible (dissociation half-time 4.9 min). At least two binding affinities were found in P2 fractions from the cerebral cortex (Kd:21 nM and 980 nM), striatum (Kd:28 nM and 690 nM), and cerebellum (Kd:22 nM and 833 nM). High affinity Bmax values were highest in striatum (1.17 pmol/mg protein), followed by cerebellum (0.67 pmol/mg protein), and cerebral cortex (0.38 pmol/mg protein). Low affinity Bmax values were highest in cerebellum (5.2 pmol/mg protein), with similar values for cerebral cortex (3.7 pmol/mg protein) and striatum (3.8 pmol/mg protein). High affinity but not low affinity binding in each brain region was stereospecific. Another inhibitor of vesicular ACh-transport also displaced 1-vesamicol binding potently (IC50:17 nM) and efficaciously (over 90%). Both high affinity and low affinity Bmax values for [3H]vesamicol-binding were highest in a partially purified synaptic vesicle fraction, followed by puriffied synaptosomes, crude membranes and P2 fractions. Specific binding was not observed in a mitochondria-enriched fraction. Crude membrane preparations of primary, neuron-enriched whole brain cultures also exhibited high (64 nM) and low affinity (1062 nM) [3H]vesamicol binding. Isoosmotic replaement of 0.18 M KCl in the binding-buffer with NaCl had no effect on binding. These results suggest that at least some high affinity [3H]vesamicol binding in rat brain preparations may be associated with synaptic vesicles, some of which may not be cholinergic in origin.  相似文献   

19.
Synechococcus R-2 (PCC 1942) actively accumulates sulphate in the light and dark. Intracellular sulphate was 1.35 ± 0.23 mol m?3 (light) and 0.894 ± 0.152 mol m?3 (dark) under control conditions (BG-11 media: pHo, 7.5; [SO42?]o, 0.304 mol m?3). The sulphate transporter is different from that found in higher plants: it appears to be an ATP-driven pump transporting one SO42?/ATP [ΔμSO42?i,o=+ 27.7 ± 0.24 kJ mol?1 (light) and + 24 ± 0.34 kj mol?1 (dark)]. The rate of metabolism of SO42?at pHo, 7.5 was 150 ± 28 pmol m?2 s?1 (n = 185) in the light but only 12.8 ± 3.6 pmol m?2 s?1 (n = 61) in the dark. Light-driven sulphate uptake is partially inhibited by DCMU and chloramphenicol. Sulphate uptake is not linked to potassium, proton, sodium or chloride transport. The alga has a constitutive over-capacity for sulphate uptake [light (n= 105): Km= 0.3 ± 0.1 mmol m?3, Vmax, = 1.8 ± 0.6 nmol m?2 s?1; dark (n= 56): Km= 1.4 ± 0.4 mmol m?3, Vmax= 41 ± 22 pmol m?2 s?1]. Sulphite (SO32?) was a competitive inhibitor of sulphate uptake. Selenate (SeO42?) was an uncompetitive inhibitor.  相似文献   

20.
Octopamine (OA) levels in each ganglion of the terrestrial snail, Helix pomatia, and the pond snail, Lymnaea stagnalis, were measured by using the HPLC technique. In both species an inhomogeneous distribution of OA was found in the central nervous system. The buccal ganglia contained a concentration of OA (12.6 pmol mg-1 and 18.8 pmol mg-1) that was two to three times higher than the pedal (4.93 pmol mg-1 and 9.2 pmol mg-1) or cerebral (4.46 pmol mg-1 and 4.9 pmol mg-1) ganglia of Helix and Lymnaea, respectively, whereas no detectable amount of OA could be assayed in the visceroparietal complex. In Lymnaea ganglia, the OA uptake into the synaptosomal fraction had a high (Km1 = 4.07 ± 0.51 μM, Vmax1 = 0.56 ± 0.11 pmol mg-1 per 20 min), and a low (Km2 = 47.6 ± 5.2 μM, Vmax2 = 4.2 ± 0.27 pmol mg-1 per 20 min), affinity component. A specific and dissociable 3H-OA binding to the membrane pellet prepared from the CNS of both Helix and Lymnaea was demonstrated. The Scatchard analysis of the ligand binding data showed a one-binding site, representing a single receptor site. The Kd and Bmax values were found to be 33.7 ± 5.95 nM and 1678 ± 179 fmol g-1 tissue in Helix and 84.9 ± 17.4 nM and 3803 ± 515 fmol g-1 tissue in Lymnaea preparation. The pharmacological properties of the putative molluscan OA receptor were characterized in both species and it was demonstrated that the receptor resembled the insect OA2 rather than to the cloned Lymnaea OA receptor. Immunocytochemical labelling demonstrated the presence of OA-immunoreactive neurons and fibres in the buccal, cerebral and pedal ganglia in the central nervous system of both species investigated. Electrophysiological experiments also suggested that the Lymnaea brain possessed specific receptors for OA. Local application of OA onto the identified buccal B2 neuron evoked a hyperpolarization which could selectively be inhibited by the OAergic agents phentolamine, demethylchlordimeform and 2-chloro-4-methyl-2-(phenylimino)-imidazolidine. Among the dopamine antagonists, ergotamine reversibly inhibited the OA response, whereas sulpiride had no effect. Based on our findings, a neurotransmitter-modulator role of OA is suggested in the gastropod CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号