首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
人碱性成纤维细胞生长因子突变体的高效表达   总被引:1,自引:0,他引:1  
用PCR法将人碱性成纤维细胞生长因子(hbFGF)基因中编码第25、69和92位的半胱氨酸(Cys)密码子突变为丝氨酸(Ser)密码子,将突变的hbFGFcDNA片断与表达质粒pET3c连接,构建重组质粒pET3chbFGFSer25,69,92。hbFGFSer25,69,92在大肠杆菌BL21(DE3)中的表达量大于30%。通过阳离子交换和肝素亲和层析两步纯化,得到纯度大于95%的hbFGFSer25,69,92。MTT法测定纯化的产物活性表明,hbFGFSer25,69,92突变体促Balb/c细胞增殖的活性与野生型hbFGF相当,为下一步对hbFGFSer25,69,92突变体进行定点化学修饰打下了基础。  相似文献   

2.
为了降低由人碱性成纤维细胞生长因子(hbFGF)的广谱促分裂活性引起的潜在副作用,用中性氨基酸丙氨酸取代了hbFGF第108位的丝氨酸,构建了促分裂活性降低的hbFGF突变体(mhbFGF)。IPTG诱导突变体在大肠杆菌BL21(DE3)中高效表达。mhbFGF的表达量约为全菌体蛋白的30%。通过离子交换和肝素亲和层析从菌体上清中纯化目标蛋白。MTT法检测促分裂活性表明,mhbFGF的促分裂活性显著低于野生型hbFGF。纯化的:mhbFGF可用于进一步的药效和安全性研究。  相似文献   

3.
Synthetic cDNA coding for human acidic fibroblast growth factor (haFGF) was expressed in E. coli under the control of the T7 promoter. The haFGF produced was purified extensively using heparin-Sepharose and phenyl-Sepharose columns. The mitogenic activity of haFGF on 3T3 and endothelial cells was significantly potentiated in the presence of heparin (10-50 micrograms/ml), while angiogenic activity was observed on chick embryo chorioallantoic membrane without exogenously added heparin. This significant potentiation of mitogenic activity was observed specifically with haFGF, not human basic fibroblast growth factor (hbFGF). Circular dichroism spectra of haFGF was not affected by the presence of heparin. The affinity of haFGF for heparin was examined using heparin affinity HPLC and was precisely confirmed to be relatively lower than that of hbFGF. These results implied that haFGF was potentiated by heparin and that this potentiation did not involve a significant change in the conformation of the haFGF molecule. The affinity of haFGF for copper was also confirmed to be higher than that of hbFGF using a copper affinity HPLC column. In addition, under acidic conditions, haFGF appeared more stable than hbFGF and was further stabilized in the presence of heparin.  相似文献   

4.
X H He  P C Shaw  S C Tam 《Life sciences》1999,65(4):355-368
PEG modification (PEGylation) has been shown to reduce immunogenicity and prolong circulating half-life of proteins. In the present study, site-directed PEGylation was used to reduce immunogenicity and prolong plasma half-life of trichosanthin (TCS). Four TCS mutants, i.e. S7C, Q219C, K173C and [K173C,Q219C] (KQ), were constructed by site-directed mutagenesis. PEG modifications were done by reacting PEG5k-maleimide or PEG20k-maleimide reagent with the newly introduced cysteine residue of the mutants. The plasma clearance rate of PEGylated TCS mutants decreased up to 100-fold and the decrease was inversely proportional to the effective molecular size. The in vitro activities such as ribosome-inactivating activity and cytotoxicity were also decreased. However, the in vivo abortifacient activity was, slightly decreased, unchanged, or even enhanced in some preparations. PEG5k modification had little effect on immunogenicity. However, PEG20k modification significantly reduced immunogenicity. All PEG20k modified TCS mutants induced lower level IgG and IgE antibodies. In particular, PEG20k-KQ and PEG20k-K173C induced weaker systemic anaphylaxis reaction in guinea pigs. In conclusion, the present results suggest that PEG20k is better than PEG5k for reducing immunogenicity and prolonging plasma half-life. The conjugate can become a better therapeutic agent.  相似文献   

5.
目的:设计构建集成干扰素突变体IIFN72C并进行聚乙二醇定点修饰,以获得高活性的长效干扰素分子。方法:利用蛋白质分子同源模建,选择在集成干扰素分子IIFN的第72位引入半胱氨酸残基构成集成干扰素突变体IIFN72C。诱导表达后经包涵体变复性和层析纯化,与单甲氧基聚乙二醇(mPEGMAL)定点偶联。修饰产物经纯化后,以SDSPAGE考察其纯度,用WISHVSV系统进行生物活性测定。结果:IIFN72C以包涵体形式表达,表达量占菌体总蛋白的30%以上,比活性与突变前相当;修饰产物大多数为单修饰体,纯化后纯度大于98%,比活性保留约为修饰前的8%。结论:成功设计并表达IIFN72C用于PEG定点修饰,修饰产物活性保留得以提高。  相似文献   

6.
目的:通过定点突变,构建集成干扰素突变体Ⅱ(IFN-Con-m2),以期获得兼具高效作用和可定点聚乙二醇(PEG)修饰的新型药物分子。 方法:采用PCR体外定点突变技术,使集成干扰素突变体Ⅰ(IFN-Con-m1)基因的第86位密码子由TAC突变为TGC。将扩增片段克隆入pET-23b表达载体,重组质粒转化大肠杆菌BL21(DE3)。IPTG诱导后,表达的IFN-Con-m2经包含体变复性、疏水层析、DEAE层析和凝胶过滤层析等纯化后,用WISH-VSV系统进行生物活性测定。 结果:IFN-Con-m2以包涵体形式表达,表达量占菌体总蛋白的30%以上。纯化后,IFN-Con-m2的纯度大于95%,比活性大于5.0×108IU/mg。 结论:构建了IFN-Con-m2的表达载体,并成功地在大肠杆菌中表达,获得了高活性突变分子IFN-Con-m2,建立了IFN-Con-m2的纯化工艺。  相似文献   

7.
One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.  相似文献   

8.
We previously reported the expression of a full-length cDNA complementary to a rat liver NAD(P)H:quinone oxidoreductase (EC 1.6.99.2) mRNA in Escherichia coli (Q. Ma, R. Wang, C. S. Yang, and A. Y. H. Lu, 1990, Arch. Biochem. Biophys. 283, 311-317). Since cysteine residues have been suggested to be important for the catalysis of flavoproteins and a lysine residue at position 76 in NAD(P)H:quinone oxidoreductase has been proposed to be involved in electron transfer of the enzyme, we investigated the roles of lysine 76 and cysteine 179 of this enzyme in catalysis by site-directed mutagenesis. Mutant cDNA clones replacing lysine 76 with valine (K76V) and cysteine 179 with alanine (C179A) were generated by a procedure based on the polymerase chain reaction. The mutant enzymes were expressed in E. coli. The cytosolic activities of the K76V and C179A mutants were 50 and 25% of that of the wild type (DTD), due to lower levels of the mutant proteins as shown by immunoblot analysis. The mutant proteins were purified to apparent homogeneity. The purified K76V and C179A mutant enzymes maintained full activities of 2,6-dichlorophenolindophenol (DCIP) reduction compared with that of the wild type. The mutant enzymes exhibited kinetic parameters for DCIP, NADH, and NADPH similar to those of DTD except that, with K76V, the Km for NADPH was doubled. Both mutant proteins contained two molecules of FAD per enzyme molecule. Dicumarol inhibited K76V and C179A mutant activities to greater than 90% at a concentration of 10(-7) M. Heat stability studies showed that C179A was much more sensitive to inactivation at 37 degrees C than both the wild-type and K76V enzymes. It is concluded from this study that lysine 76 and cysteine 179 are not essential in catalysis and in the binding of FAD, DCIP, and dicumarol. However, lysine residue 76 appears to play a role in NADPH binding and cysteine residue 179 is important in maintaining the stability of the enzyme.  相似文献   

9.
为了建立聚乙二醇 (PEG) 巯基定点修饰溶葡球菌酶的方法,并检验假定连接区的突变与修饰对酶活的影响,对溶葡球菌酶的假定连接区进行了巯基聚乙二醇定点修饰研究。通过分析溶葡球菌酶的结构特征,选择两个结构域之间的氨基酸 (133-154aa) 进行定点突变引入半胱氨酸残基。使用单甲氧基聚乙二醇马来酰亚胺 (mPEG-MAL) 进行定点修饰,对修饰后的酶进行纯化并测定酶活性。结果表明定点突变的半胱氨酸残基PEG修饰效率高、产物单一,运用简便的Ni2+-NTA柱亲和层析法实现了一步分离,获得了高纯度的目标蛋白,但在连接区进行定点突变及PEG定点修饰后的酶活有不同程度的降低,表明假定连接区部分位点的PEG修饰会对溶葡球菌酶的催化活性产生一定影响。  相似文献   

10.
He XH  Shaw PC  Xu LH  Tam SC 《Life sciences》1999,64(14):1163-1175
Trichosanthin (TCS), a type I ribosome-inactivating protein (RIP), was modified with polyethylene glycol (PEG) in order to reduce its antigenicity and prolong its half-life. Computer modeling identified three potential antigenic sites namely Q219, K173 and S7. By site-directed mutagenesis, these sites were changed into cysteine through which PEG can be covalently attached. The resulting TCS had a PEG coupled directly above one of its potential antigenic determinants, hence masking the antigenic region and prevent binding of antibodies specific to this site. In general, mutation did not bring about significant changes in ribosome-inactivating activity, cytotoxicity, and abortifacient activity of TCS. However, the in vitro activities of PEG modified (PEGylated) TCS muteins were 3-20 folds lower and the in vivo activity 50% less than that of nTCS. Pharmacokinetics study indicated that all three PEGylated TCS muteins showed 6-fold increase in mean residence time as compared to unmodified muteins. The binding affinity of an IgE monoclonal antibody (TE1) to TCS was greatly reduced after PEG modification (PEGylation) at position Q219, suggesting that TE1 recognized an epitope very near to residue Q219. PEGylated TCS muteins induced similar IgG response but 4-16 fold lower IgE response in mice compared with nTCS.  相似文献   

11.
The effect of O-(carboxymethyl)chitins (CM-chitins) on the activation of mouse-peritoneal macrophages in vivo and their mitogenic activity on mouse spleen-cells were investigated. The induction of cytotoxic macrophages is enhanced by an increase of negative charge at O-6 and decreased by further modification at O-3 of the GlcNAc residue. CM-Chitins had a minor effect on mitogenic activity that was independent of the site of modification; partially N-deacetylated chitins had little activity. Although there was remarkable enhancement of accessibility to lysozyme upon modification at O-6 of the GlcNAc residue, the accessibility was decreased by further substitution at O-3.  相似文献   

12.
Recombinant interferon alpha-2 (IFN-alpha2) is used clinically to treat a variety of viral diseases and cancers. IFN-alpha2 has a short circulating half-life, which necessitates frequent administration to patients. Previous studies showed that it is possible to extend the circulating half-life of IFN-alpha2 by modifying lysine residues of the protein with amine-reactive poly(ethylene glycol) (PEG) reagents. However, amine-PEGylated IFN-alpha2 comprises a heterogeneous product mixture with low specific activity due to the large number and critical locations of lysine residues in IFN-alpha2. In an effort to overcome these problems we determined the feasibility of creating site-specific, mono-PEGylated IFN-alpha2 analogues by introducing a free (unpaired) cysteine residue into the protein, followed by modification of the added cysteine residue with a maleimide-PEG reagent. IFN-alpha2 cysteine analogues were expressed in Escherichia coli and purified, and their in vitro bioactivities were measured in the human Daudi cell line growth inhibition assay. Several cysteine analogues were identified that do not significantly affect in vitro biological activity of IFN-alpha2. Certain of the cysteine analogues, but not wild-type IFN-alpha2, reacted with maleimide-PEG to produce mono-PEGylated proteins. The PEG-Q5C analogue retained high in vitro bioactivity (within 3- to 4-fold of wild-type IFN-alpha2) even when modified with 20- and 40-kDa PEGs. Pharmacokinetic experiments indicated that the 20-kDa PEG-Q5C and 40-kDa PEG-Q5C proteins have 20-fold and 40-fold longer half-lives, respectively, than IFN-alpha2 following subcutaneous administration to rats. These studies demonstrate the feasibility of using site-specific PEGylation technology to create a long-acting, mono-PEGylated IFN-alpha2 protein with high specific activity.  相似文献   

13.
Palmitoylation is a reversible post-translational modification used by cells to regulate protein activity. The regulator of G-protein signaling (RGS) proteins RGS4 and RGS16 share conserved cysteine (Cys) residues that undergo palmitoylation. In the accompanying article (Hiol, A., Davey, P. C., Osterhout, J. L., Waheed, A. A., Fischer, E. R., Chen, C. K., Milligan, G., Druey, K. M., and Jones, T. L. Z. (2003) J. Biol. Chem. 278, 19301-19308), we determined that mutation of NH2-terminal cysteine residues in RGS16 (Cys-2 and Cys-12) reduced GTPase accelerating (GAP) activity toward a 5-hydroxytryptamine (5-HT1A)/G alpha o1 receptor fusion protein in cell membranes. NH2-terminal acylation also permitted palmitoylation of a cysteine residue in the RGS box of RGS16 (Cys-98). Here we investigated the role of internal palmitoylation in RGS16 localization and GAP activity. Mutation of RGS16 Cys-98 or RGS4 Cys-95 to alanine reduced GAP activity on the 5-HT1A/G alpha o1 fusion protein and regulation of adenylyl cyclase inhibition. The C98A mutation had no effect on RGS16 localization or GAP activity toward purified G-protein alpha subunits. Enzymatic palmitoylation of RGS16 resulted in internal palmitoylation on residue Cys-98. Palmitoylated RGS16 or RGS4 WT but not C98A or C95A preincubated with membranes expressing 5-HT1a/G alpha o1 displayed increased GAP activity over time. These results suggest that palmitoylation of a Cys residue in the RGS box is critical for RGS16 and RGS4 GAP activity and their ability to regulate Gi-coupled signaling in mammalian cells.  相似文献   

14.
天花粉蛋白的定点聚乙二醇修饰   总被引:3,自引:0,他引:3  
用一种定点修饰天花粉蛋白(trichosanthin,TCS)的方法,将聚乙二醇(PEG)偶联到预先选定的位点.利用nTCS无半胱氨酸(Cys)残基这一特点,通过定点突变将一个Cys残基引入TCS以取代第7位的丝氨酸(Ser)残基.然后,与巯基反应的PEG-m aleim ide 即可偶联到新引入的Cys 残基上.经纯化得到均一的PEG-TCS复合物,在SDS-PAGE上显示一条区带,表观分子量为38 kD.复合物的体外致核糖体失活活性降低了6倍,但其体内引产活性与nTCS相同.定点PEG修饰方法为改造TCS提供了新途径.  相似文献   

15.
Apolipoprotein (apo) E polymorphism has a significant effect on plasma cholesterol and low density lipoprotein cholesterol concentrations. The association of two apoE5 isoforms with elevated plasma low density lipoprotein cholesterol levels in two unrelated subjects led us to investigate the primary structures and receptor-binding properties of their apoE. Cysteamine modification and isoelectric focusing demonstrated that the apoE5 isoform from subject 1 did not contain cysteine but that the apoE5 isoform from subject 2 contained one residue of cysteine. The structural mutation in the apoE5 isoform of subject 1 was determined by peptide sequencing. Like apoE4, this variant had arginine at position 112 but differed from apoE4 by the substitution of arginine for proline at position 84. When purified and subjected to a competitive binding assay, this apoE5(84 Pro----Arg, 112 Cys----Arg) variant had the same receptor-binding activity as normal apoE3. Because subject 2 was of Japanese descent and her apoE5 contained one cysteine residue, we suspected that it would contain the lysine-forglutamic acid mutation at position 3 that has been described previously in Japanese subjects. This was confirmed by directly sequencing the first 10 amino acid residues of her apoE. When subjected to the competitive binding assay, the total apoE from subject 2, which consisted of approximately equal amounts of normal apoE3 and apoE5(3 Glu----Lys), had a binding activity of 188%, confirming the previously reported enhanced binding of this variant. These results demonstrate that the enhancement of receptor-binding activity of more basic isoforms of apoE depends on the position at which additional positively charged amino acids are incorporated.  相似文献   

16.

Background

In Saccharomyces cerevisiae methylation at cysteine residue displayed enhanced activity of trehalose-6-phosphate synthase (TPS).

Methods

The cysteine methyltransferase (CMT) responsible for methylating TPS was purified and characterized. The amino acid sequence of the enzyme protein was determined by a combination of N-terminal sequencing and MALDI-TOF/TOF analysis. The nucleotide sequence of the CMT gene was determined, isolated from S. cerevisiae and expressed in E. coli. Targeted disruption of the CMT gene by PCR based homologous recombination in S. cerevisiae was followed by metabolite characterization in the mutant.

Results

The purified enzyme was observed to enhance the activity of TPS by a factor of 1.76. The 14 kDa enzyme was found to be cysteine specific. The optimum temperature and pH of enzyme activity was calculated as 30 °C and 7.0 respectively. The Km Vmax and Kcat against S-adenosyl-l-methionine (AdoMet) were 4.95 μM, 3.2 U/mg and 6.4 s− 1 respectively. Competitive inhibitor S-Adenosyl-l-homocysteine achieved a Ki as 10.9 μM against AdoMet. The protein sequence contained three putative AdoMet binding motifs. The purified recombinant CMT activity exhibited similar physicochemical characteristics with the native counterpart. The mutant, Mataα, cmt:: kanr exhibited almost 50% reduction in intracellular trehalose concentration.

Conclusion

A novel cysteine methyltransferase is purified, which is responsible for enhanced levels of trehalose in S. cerevisiae.

General significance

This is the first report about a cysteine methyltransferase which performs S methylation at cysteine residue regulating TPS activity by 50%, which resulted in an increase of the intercellular stress sugar, trehalose.  相似文献   

17.
Dibenzothiophene (DBT), a model of organic sulfur compound in petroleum, is microbially desulfurized to 2-hydroxybiphenyl (2-HBP), and the gene operon dszABC was required for DBT desulfurization. The final step in the microbial DBT desulfurization is the conversion of 2'-hydroxybiphenyl-2-sulfinate (HBPSi) to 2-HBP catalyzed by DszB. In this study, DszB of a DBT-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1 was overproduced in Escherichia coli by coexpression with chaperonin genes, groEL/groES, at 25 degrees C. The recombinant DszB was purified to homogeneity and characterized. The optimal temperature and pH for DszB activity were 35 degrees C and about 7.5, respectively. The K(m) and k(cat) values for HBPSi were 8.2 microM and 0.123.s(-1), respectively. DszB has only one cysteine residue, and the mutant enzyme completely lost the activity when the cysteine residue was changed to a serine residue. This result together with experiments using inhibitors showed that the cysteine residue contributes to the enzyme activity. DszB was also inhibited by a reaction product, 2-HBP (K(i)=0.25 mM), and its derivatives, but not by the other reaction product, sulfite. The enzyme showed a narrow substrate specificity: only 2-phenylbenzene sulfinate except HBPSi served as a substrate among the aromatic and aliphatic sulfinates or sulfonates tested. DszB was thought to be a novel enzyme (HBPSi desulfinase) in that it could specifically cleave the carbon-sulfur bond of HBPSi to give 2-HBP and sulfite ion without the aid of any other proteinic components and coenzymes.  相似文献   

18.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   

19.
利用人白细胞介素11(hIL-11)无半胱氨酸(Cys)残基这一特点,通过定点突变将一个Cys残基引入hIL-11的N末端。然后,利用与Cys 巯基特异性反应的mPEG-马来酰亚胺将mPEG偶联到预先选定的位点,经层析纯化得到hIL-11的定点PEG修饰物。利用依赖型细胞株7TD1测定其生物学活性,结果表明,其体外生物学活性保持原有hIL-11活性的30%左右。定点聚乙二醇修饰方法为定向改造hIL-11,提高其药效的应用研究打下基础。  相似文献   

20.
4-Oxalomesaconate hydratase from Pseudomonas ochraceae NGJ1 is unstable in the absence of reducing reagents such as dithiothreitol, and strongly inhibited by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). To study the role of cysteine residues in enzyme catalysis, the eight individual cysteine residues of the enzyme were replaced with serine residues by site-directed mutagenesis. The catalytic properties and chemical modification of wild- and mutant type-enzymes by DTNB showed that (i) none of eight cysteine residues was essential for enzyme catalysis; (ii) the inhibition by DTNB was mostly due to modification of Cys-186; (iii) Cys-96 might be another residue reacting with DTNB, and its modification caused an increase in the K(m)-value for 4-oxalomesaconate; (iv) the other six cysteine residues were inaccessible to DTNB, but susceptible to HgCl(2); and (v) only replacement of Cys-186 remarkably improved the stability of the enzyme in the absence of reducing reagent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号