共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+ and K+ equilibrium distribution between the medium and glycerinated muscle fibres of the frog has been investigated under equal concentrations of NaCl and KCl in solutions. Concentrations of NaCl and KCl varied from 0.5-1.5 mkM till 50 mM. Ion strength (0.11) was constant owing to the imidazol--HCl buffer. The binding of Na+ and K+ by model fibres occurred in accordance with the Langmur equation. Two kinds of cation-binding sites were found. The one with a low limiting ion sorption (A infinity approximately 1.3 mmol/kg dry weight of fibres) and high affinities (-delta F0 approximately 4.3 kcal/mol) was saturated at 0.5 mM concentrations (Na+ = K+) in the medium, and the other--with A infinity exceeding the previous one by an order and low -delta F0 (2.5 kcal/mol) was discovered at Na+, K+-1-10 mM. At ion concentrations equal to 0.5-1 mM the Langmur-binding is disturbed. At Na+-K+ less than or equal to 1 mM Na+ bound:K+ bound approximately to 1:1. At higher concentrations of cations Na+ bound:K+ bound approximately equal to 3:2. It is concluded that at least part of the sites in model fibres is capable of interacting only with Na+, but not with K+. It is supposed that at equal concentrations of Na+ and K+ in the medium the cations are bound by Na+, K+-ATPase of glycerinated muscle fibres. 相似文献
2.
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites. 相似文献
3.
4.
5.
Hyun Dju Kim Martha Baird John Sallis Stewart Nicol Russell E. Isaacks 《Biochemical and biophysical research communications》1984,119(3):1161-1167
The erythrocytes of the echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus), which are practically devoid of intracellular ATP content (1), were examined for active Rb86 influx and for the presence of Na+K+Mg ATPase. We found that intact erythrocytes of both species possess the ability to actively transport cations. Ouabain sensitive Rb86 influx in the echidna was approximately 0.17 μmoles/ml cells × hr, whereas the platypus exhibited a higher value of 0.43 μmoles/ml cells × hr. Surprisingly, ouabain sensitive Na+K+Mg ATPase activity of isolated membranes was high amounting to some 15 to 25 fold higher than the human erythrocyte counterpart determined under identical conditions. These findings suggest that a trace amount of ATP is sufficient to maintain active cation transport across the monotreme cell membranes. 相似文献
6.
T T Salum M K Tsil'mer T E Kullisaar T E Vikhalemm L Ia Tiakhepyld 《Ukrainski? biokhimicheski? zhurnal》1988,60(2):47-52
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity. 相似文献
7.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase. 相似文献
8.
9.
Charge translocation by the Na+/K+-ATPase investigated on solid supported membranes: cytoplasmic cation binding and release. 总被引:1,自引:0,他引:1
下载免费PDF全文

In the preceding publication (. Biophys. J. 76:000-000) a new technique was described that was able to produce concentration jumps of arbitrary ion species at the surface of a solid supported membrane (SSM). This technique can be used to investigate the kinetics of ion translocating proteins adsorbed to the SSM. Charge translocation of the Na+/K+-ATPase in the presence of ATP was investigated. Here we describe experiments carried out with membrane fragments containing Na+/K+-ATPase from pig kidney and in the absence of ATP. Electrical currents are measured after rapid addition of Na+. We demonstrate that these currents can be explained only by a cation binding process on the cytoplasmic side, most probably to the cytoplasmic cation binding site of the Na+/K+-ATPase. An electrogenic reaction of the protein was observed only with Na+, but not with other monovalent cations (K+, Li+, Rb+, Cs+). Using Na+ activation of the enzyme after preincubation with K+ we also investigated the K+-dependent half-cycle of the Na+/K+-ATPase. A rate constant for K+ translocation in the absence of ATP of 0.2-0.3 s-1 was determined. In addition, these experiments show that K+ deocclusion, and cytoplasmic K+ release are electroneutral. 相似文献
10.
11.
12.
13.
Uehara A Iwamoto T Kita S Shioya T Yasukochi M Nakamura Y Imanaga I 《Journal of cellular physiology》2005,203(2):420-428
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1. 相似文献
14.
Spin-label study of actin-myosin-nucleotide interactions in contracting glycerinated muscle fibers 总被引:2,自引:0,他引:2
This paper presents the results of simultaneous measurements of the electron paramagnetic resonance signal of spin-label bound to myosin cross-bridges and the mechanical response of glycerol-treated rabbit psoas fibers under isometric contraction. No observable change has been detected in vitro in the local motion of spin-label bound to myosin-ATP with conventional electron paramagnetic resonance techniques when F-actin is added, even under conditions where more than 30% of the myosin is expected to be in an attached state. In contrast, a clear change in the spin-label mobility is observed when cross-bridges are attached to thin filaments. Similar spectra are also observed when cross-bridges are in the rigor state or in an attached state in the presence of 5′-adenylyl imidodiphosphate in place of ATP. A good proportionality is found between the change in the electron paramagnetic resonance signal and the tension when substrate concentration is varied under conditions where no appreciable amount of rigor complex is present. Thus, by assuming 0 and 100% attachment in the relaxed and rigor states, respectively, the extent of cross-bridge attachment can be estimated; it is about 80% at a relatively low ATP concentration where the maximum tension is observed, while it is about 35% in the millimolar range of ATP concentration. A consistent explanation can be given for the spectra obtained both in solution and in the fiber, provided that two distinct states, the preactive and active states, exist in cross-bridges attached to thin filaments. The contribution of intermediate complexes to the force generation is discussed. The effect of Ca2+ control on cross-bridge attachment is also studied at various concentrations of substrate. 相似文献
15.
16.
Purified dog kidney (Na+ + K+)-ATPase (EC 3.6.1.3) was inactivated with high concentrations of 2-mercaptoethanol at 50-55 degrees C. The inactivation was prevented by NaCl or KCl, with KCl being more effective than NaCl (the former ion being about one order more efficient under a typical set of experimental conditions). A disulfide bond in the beta-subunit of the enzyme protein was prevented from reductive cleavage by NaCl or KCl in accordance with protection of the enzyme activity. Choline chloride did not exert a significant protective effect over a similar concentration range. (Na+ + K+)-ATPase was also inactivated with high concentrations of 2-mercaptoethanol in the presence of low concentrations of dodecyl sulfate. This inactivation was also prevented by NaCl or KCl, with the latter being again more efficient than the former. These results indicate that Na+ and K+ bound to their respective ion-binding sites on the alpha-subunit exert a protective effect on a disulfide bond on the beta-subunit. This suggests some sort of interaction between the alpha- and the beta-subunits. 相似文献
17.
Yoshinori Marunaka 《The Journal of membrane biology》1988,101(1):19-31
Summary To clarify the dependency of the Na/K coupling of the Na,K-pump on internal Na and external K concentrations in skeletal muscle, the ouabain-induced change in membrane potential, the ouabain-induced change in Na efflux and the membrane resistance were measured at various internal Na and external K concentrations in bullfrog sartorius muscle.Upon raising the internal Na concentration from 6 mmol/kg muscle water to 20 mmol/kg muscle water, the magnitude of the ouabain-induced change in membrane potential increased about eightfold and the magnitude of the ouabain-induced change in Na efflux increased about fivefold while the membrane resistance was not significantly changed. As the external K concentration increased from 1 to 10mm, the magnitude of the ouabain-induced change in membrane potential decreased (1/5.5 fold), while the magnitude of the ouabain-induced change in Na efflux increased (about 1.5-fold). The membrane resistance decreased upon raising the external K concentration from 1 to 10mm (1/2-fold). These observations imply that the values of the Na/K coupling of the Na,K-pump increases upon raising the internal Na concentration and decreases upon raising the external K concentration. 相似文献
18.
J D Robinson 《Biochimica et biophysica acta》1975,397(1):194-206
K+ appears to decrease the affinity of the (Na+ + K+)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3) for its substrate, Mg2+ - ATP, and Mg2+ - ATP, in turn, appears to decrease the affinity of the enzyme for K+. These antagonisms have been investigated in terms of a quantitative model defining the magnitude of the effects as well as identifying the class of K+ sites on the enzyme involved. K+ increased the apparent Km for Mg2+ - ATP, an effect that was antagonized competitively by Na+. The data can be fitted to a model in which Mg2+ - ATP binding is prevented by occupancy of alpha-sites on the enzyme by K+ (i.e. sites of moderate affinity for K+ accessible on the "free" non-phosphorylated enzyme, in situ on the external membrane surface). By contrast, occupancy of these alpha-sites by Na+ has no effect on Mg2+ - ATP binding to the enzyme. On the other hand, Mg2+ - ATP decreased the apparent affinity of the enzyme for K+ at the alpha-sites, in terms of (i) the KD for K+ measured by K+-accelerated inactivation of the enzyme by F-, and (ii) the concentration of K+ for half-maximal activation of the K+-dependent phosphatase reaction (which reflects the terminal hydrolytic steps of the overall ATPase reaction). These data fit the same quantitative model. Although this formulation does not support schemes in which ATP binding effects the release of transported K+ from discharge sites, it is consistent with observations that K+ can inhibit the enzyme at low substrate concentrations, and that Li+, which has poor efficacy when occupying these alpha-sites, can stimulate enzymatic activity at high K+ concentrations by displacing the inhibitory K+. 相似文献
19.
A particulate (Na + K)-ATPase preparation from dog kidney bound [48V]-ortho-vanadate rapidly at 37°C through a divalent cation-dependent process. In the presence of 3 mM MgCl2 theK
d was 96 nM; substituting MnCl2 decreased theK
d to 12 nM but the maximal binding remained the same, 2.8 nmol per mg protein, consistent with 1 mol vanadate per functional enzyme complex. Adding KCl in the presence of MgCl2 increased binding, with aK
0.5 for KCl near 0.5 mM; the increased binding was associated with a drop inK
d for vanadate to 11 nM but with no change in maximal binding. Adding NaCl in the presence of MgCl2 decreased binding markedly, with anI
50 for NaCl of 7 mM. However, in the presence of MnCl2 neither KCl nor NaCl affected vanadate binding appreciably. Both the nonhydrolyzable, ,-imido analog of ATP and nitrophenyl phosphate, a substrate for the K-phosphatase reaction that this enzyme also catalyzes, decreased vanadate binding at concentrations consistent with their acting at the low-affinity substrate site of the enzyme; the presence of KCl increased the concentration of each required to decrease vanadate binding. Oligomycin decreased vanadate binding in the presence of MgCl2, whereas dimethyl sulfoxide and ouabain increased it. With inside-out membrane vesicles from red blood cells vanadate inhibited both the K-phosphatase and (Na + K)-ATPase reactions; however, with the K-phosphatase reaction extravesicular K+ (corresponding to intracellular K+) both stimulated catalysis and augmented vanadate inhibition, whereas with the (Na + K)-ATPase reaction intravesicular K+ (corresponding to extracellular K+) both stimulated catalysis and augmented vanadate binding. 相似文献