首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E A Shapiro  M G Grinfel'dt 《Tsitologiia》1985,27(10):1164-1171
The Na+ and K+ equilibrium distribution between the medium and glycerinated muscle fibres of the frog has been investigated under equal concentrations of NaCl and KCl in solutions. Concentrations of NaCl and KCl varied from 0.5-1.5 mkM till 50 mM. Ion strength (0.11) was constant owing to the imidazol--HCl buffer. The binding of Na+ and K+ by model fibres occurred in accordance with the Langmur equation. Two kinds of cation-binding sites were found. The one with a low limiting ion sorption (A infinity approximately 1.3 mmol/kg dry weight of fibres) and high affinities (-delta F0 approximately 4.3 kcal/mol) was saturated at 0.5 mM concentrations (Na+ = K+) in the medium, and the other--with A infinity exceeding the previous one by an order and low -delta F0 (2.5 kcal/mol) was discovered at Na+, K+-1-10 mM. At ion concentrations equal to 0.5-1 mM the Langmur-binding is disturbed. At Na+-K+ less than or equal to 1 mM Na+ bound:K+ bound approximately to 1:1. At higher concentrations of cations Na+ bound:K+ bound approximately equal to 3:2. It is concluded that at least part of the sites in model fibres is capable of interacting only with Na+, but not with K+. It is supposed that at equal concentrations of Na+ and K+ in the medium the cations are bound by Na+, K+-ATPase of glycerinated muscle fibres.  相似文献   

2.
Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

3.
4.
In Na+- and K+-free solution, an inward-directed current can be detected in Xenopus oocytes, which is inhibited by cardic glycosides and activated by ATP. Therefore, it is assumed to be generated by the Na+, K+ pump. At negative membrane potentials, the pump current increases with more negative potentials and with increasing [H+] in the external medium. This current is not observed when Mg2+ instead of Ba2+ is the only divalent cation present in the bath medium, and it does not depend on whether Na+ or K+ is present internally. At 5 to 10 mM Na+ externally, maximum pump-generated current is obtained while no current can be detected in presence of physiological [Na+]. It is suggested that in low-Na+ and K+-free medium the Na+, K+ pump molecule can either form a conductive pathway that is permeable to Ba2+ or protons or operate in its conventional transport mode accepting Ba2+ as a K+ congener. A reversed pump mode or an electrogenic uncoupled Na+-efflux mode is excluded.  相似文献   

5.
6.
Glycerinated rabbit psoas muscle fibers containing native CPK, ATPase, and myokinase activities were used and isometric contraction and relaxation responses to either ADP or ATP + CP or to ATP alone in the presence and absence of P1, P5-di(adenosine-5'-pentaphosphate), a myokinase inhibitor, were compared. In previous (14) work it was shown that CP generated more efficient and faster contraction and relaxation of glycerinated muscle fibers than ATP. The present work deals with the role of myokinase in the differential response of fibers to CP and ATP. Inhibition of the myokinase activity of these fibers caused slight diminution of the rate of contraction at physiological concentrations of ATP. Uninhibited fibers were not able to reach maximum contraction, because the tension began to drop gradually even in the presence of Ca2+. Addition of Ap5A permitted maximum contraction and the ability to stay at the contracted state. In the case of CP + adenosine nucleotides (ATP or ADP), myokinase activity decreased the rate of tension development which was statistically significant after 5-7 sec of contraction. Thus, a higher tension was obtainable when myokinase was inhibited. At high concentration of adenine nucleotides (greater than 2 mM) and in the absence of Ap5A, not only the maximum tension never was reached, but a spontaneous drop in tension was observed before addition of EGTA, as was seen with ATP alone. Relaxation was faster and more complete in the presence of uninhibited myokinase activity except that the ADP was low (125 mM). These observations provide further evidence for a close functional interaction of these three enzymes in the mechanism of contraction and relaxation, giving further support to the notion of the creatine-phosphocreatine energy shuttle.  相似文献   

7.
In the presence of Mg2+ vanadate was shown to facilitate ouabain binding to (Na+ + K+)-ATPase in much the same way as Pi does. Thus the hypothesis that vanadate interacts with the phosphate site of the enzyme seems to be supported by ouabain binding experiments. At given ouabain concentrations maximum binding is achieved at microM concentrations of vanadate whereas mM concentrations of Pi are needed. Na+ as well as K+ counteract ouabain binding but some cardiac glycoside binding is still possible at in vivo concentrations of these cations. A minor contamination of the enzyme preparations with vanadate could explain the in vitro binding of ouabain that can be obtained with Mg2+ and in the absence of Pi.  相似文献   

8.
Hydrostatic compression in glycerinated rabbit muscle fibers.   总被引:2,自引:2,他引:0       下载免费PDF全文
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.  相似文献   

9.
The erythrocytes of the echidna (Tachyglossus aculeatus) and platypus (Ornithorhynchus anatinus), which are practically devoid of intracellular ATP content (1), were examined for active Rb86 influx and for the presence of Na+K+Mg ATPase. We found that intact erythrocytes of both species possess the ability to actively transport cations. Ouabain sensitive Rb86 influx in the echidna was approximately 0.17 μmoles/ml cells × hr, whereas the platypus exhibited a higher value of 0.43 μmoles/ml cells × hr. Surprisingly, ouabain sensitive Na+K+Mg ATPase activity of isolated membranes was high amounting to some 15 to 25 fold higher than the human erythrocyte counterpart determined under identical conditions. These findings suggest that a trace amount of ATP is sufficient to maintain active cation transport across the monotreme cell membranes.  相似文献   

10.
It has been shown that the desensibilization of the enzymic preparations of Na+, K+-ATPase by urea, DS-Na, digitonin and CHAPS reduces differently the amount of alpha beta-protomer in the enzymic preparations and the Hill coefficients of Na+ and K+. The factors (urea, DS-Na) which cause a more pronounced decrease in the amount of beta-protomer reduce the nH of Na+ for Na+, K+-ATPase and nH of K+ for Na+, K+-ATPase and K+-pNPPase to unit. The analysis of the effects of ATP and pNPP indicates that ATP has a protective effect only in the case of urea and DS-Na, but this effect is not exerted by pNPP (nonallosteric substrate). A conclusion is drawn that cooperative interactions of Na+, K+-ATPase from the brain with Na+ require more higher level of the oligomeric structure of enzyme than cooperative interactions with K+. At the same time these cooperative interactions in the both cases need subunits interactions in the protomer and interactions between cation sites with relatively high affinity.  相似文献   

11.
12.
In the preceding publication (. Biophys. J. 76:000-000) a new technique was described that was able to produce concentration jumps of arbitrary ion species at the surface of a solid supported membrane (SSM). This technique can be used to investigate the kinetics of ion translocating proteins adsorbed to the SSM. Charge translocation of the Na+/K+-ATPase in the presence of ATP was investigated. Here we describe experiments carried out with membrane fragments containing Na+/K+-ATPase from pig kidney and in the absence of ATP. Electrical currents are measured after rapid addition of Na+. We demonstrate that these currents can be explained only by a cation binding process on the cytoplasmic side, most probably to the cytoplasmic cation binding site of the Na+/K+-ATPase. An electrogenic reaction of the protein was observed only with Na+, but not with other monovalent cations (K+, Li+, Rb+, Cs+). Using Na+ activation of the enzyme after preincubation with K+ we also investigated the K+-dependent half-cycle of the Na+/K+-ATPase. A rate constant for K+ translocation in the absence of ATP of 0.2-0.3 s-1 was determined. In addition, these experiments show that K+ deocclusion, and cytoplasmic K+ release are electroneutral.  相似文献   

13.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase.  相似文献   

14.
15.
16.
17.
The number of K+ bound to the (Na+ + K+)-ATPase has been measured under equilibrium conditions by a differential-titration technique (Hastings, D.F. (1977) Anal. Biochem. 83, 416-432). 5.1 K+ were bound per 32P-labelling site. The K'D for K+ was dependent on the concentration of choline, which was included to give ionic strength. K'D was 59 +/- 2.5 microM with 97 mM choline, 26 +/-1.9 microM with 30 mM choline. The K+ : choline selectivity was 2564 : 1 and the calculated K'D for K+ with zero choline was 11 microM and for choline with zero K+ was 28 mM. 20 microM ATP in the presence of 97 mM choline incresed the K'D for potassium 3-fold to 177 +/- 14 microM. The K'D for K+ with 3 mM Na+ in the presence of 27 mM choline was 81 +/- 10 microM and with 30 mM Na+ without choline 700 +/- 250 microM. The calculated K'D for Na+ at zero K+ and zero choline was 0.6 +/- 0.2 mM. The K+ : Na+ selectivity was 54 : 1.  相似文献   

18.
This paper presents the results of simultaneous measurements of the electron paramagnetic resonance signal of spin-label bound to myosin cross-bridges and the mechanical response of glycerol-treated rabbit psoas fibers under isometric contraction. No observable change has been detected in vitro in the local motion of spin-label bound to myosin-ATP with conventional electron paramagnetic resonance techniques when F-actin is added, even under conditions where more than 30% of the myosin is expected to be in an attached state. In contrast, a clear change in the spin-label mobility is observed when cross-bridges are attached to thin filaments. Similar spectra are also observed when cross-bridges are in the rigor state or in an attached state in the presence of 5′-adenylyl imidodiphosphate in place of ATP. A good proportionality is found between the change in the electron paramagnetic resonance signal and the tension when substrate concentration is varied under conditions where no appreciable amount of rigor complex is present. Thus, by assuming 0 and 100% attachment in the relaxed and rigor states, respectively, the extent of cross-bridge attachment can be estimated; it is about 80% at a relatively low ATP concentration where the maximum tension is observed, while it is about 35% in the millimolar range of ATP concentration. A consistent explanation can be given for the spectra obtained both in solution and in the fiber, provided that two distinct states, the preactive and active states, exist in cross-bridges attached to thin filaments. The contribution of intermediate complexes to the force generation is discussed. The effect of Ca2+ control on cross-bridge attachment is also studied at various concentrations of substrate.  相似文献   

19.
Purified dog kidney (Na+ + K+)-ATPase (EC 3.6.1.3) was inactivated with high concentrations of 2-mercaptoethanol at 50–55°C. The inactivation was prevented by NaCl or KCl, with KCl being more effective than NaCl (the former ion being about one order more efficient under a typical set of experimental conditions). A disulfide bond in the β-subunit of the enzyme protein was prevented from reductive cleavage by NaCl or KCl in accordance with protection of the enzyme activity. Choline chloride did not exert a significant protective effect over a similar concentration range. (Na+ + K+)-ATPase was also inactivated with high concentrations of 2-mercaptoethanol in the presence of low concentrations of dodecyl sulfate. This inactivation was also prevented by NaCl or KCl, with the latter being again more efficient than the former. These results indicate that Na+ and K+ bound to their respective ion-binding sites on the α-subunit exert a protective effect on a disulfide bond on the β-subunit. This suggests some sort of interaction between the α- and the β-subunits.  相似文献   

20.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号