首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although highly homologous in amino acid sequence, the agonist-receptor complexes formed by the human lutropin receptor (hLHR) and rat (r) LHR follow different intracellular routes. The agonist-rLHR complex is routed mostly to a lysosomal degradation pathway whereas a substantial portion of the agonist-hLHR complex is routed to a recycling pathway. In a previous study, we showed that grafting a five-residue sequence (GTALL) present in the C-terminal tail of the hLHR into the equivalent position of the rLHR redirects a substantial portion of the internalized agonist-rLHR complex to a recycling pathway.Using a number of mutations of the GTALL motif, we now show that only the first two residues (GT) of this motif are necessary and sufficient to induce recycling of the internalized agonist-rLHR complex. Phosphoamino acid analysis and mutations of the GT motif show that phosphorylation of the threonine residue is not necessary for recycling. Lastly, we show that addition of portions of the C-terminal tail of the hLHR that include the GT motif to the C-terminal tails of the rat follitropin or murine delta-opioid receptors promotes the post-endocytotic recycling of these G protein-coupled receptors.We conclude that the GT motif present in the C-terminal tail of the hLHR is a transferable motif that promotes the postendocytotic recycling of several G protein-coupled receptors and that the GT-induced recycling does not require the phosphorylation of the threonine residue.  相似文献   

2.
Mutants of the human (h) lutropin receptor (LHR) were analyzed using a combination of biochemical and imaging approaches to define motifs that participate in the postendocytotic sorting of this G protein-coupled receptor (GPCR). We show that a substantial portion of the human chorionic gonadotropin internalized by the hLHR sorts to a recycling pathway, and the internalized hLHR accumulates in endosomes because of the C-terminal cysteine (Cys(699)) and an upstream Leu(683) present in the hLHR. The removal or simultaneous mutation of these two residues reroutes the internalized human chorionic gonadotropin to a degradation pathway and the internalized hLHR to lysosomes. We also show that grafting the 17 C-terminal residues of the hLHR into the C-terminal tail of two GPCRs that are routed to a lysosomal/degradation pathway (the rat LHR or the murine delta opioid receptor) reroutes them to an endosomal/recycling pathway. This is due to the Leu(683) and Cys(699) combination and another recycling motif (Gly(687)Thr(688)) that was previously identified in the hLHR. The importance of both motifs can be readily ascertained in the context of a murine delta opioid receptor/hLHR chimera. The importance of the Gly(687)Thr(688) motif is revealed mostly in the context of a rat LHR/hLHR chimera. These studies define a novel, noncontiguous, transferable motif that participates in the sorting of internalized GPCRs.  相似文献   

3.
Although the fates of the internalized hormone-receptor complexes formed by the lutropin/choriogonadotropin and the TSH receptors have been examined in some detail, much less is known about the fate of the internalized FSH-FSH receptor (FSHR) complex.Using biochemical and imaging approaches we show here that the majority of the internalized FSH-FSHR complex accumulates in endosomes and subsequently recycles back to the cell surface where the bound, intact hormone dissociates back into the medium. Only small amounts of FSH and the FSHR are routed to a lysosomal degradation pathway, and the extent of FSH-induced down-regulation of the cell surface and total FSHR is minimal. This pathway was detected in heterologous (human kidney 293T) cells transfected with the rat (r) or human (h) FSHR as well as in a mouse Sertoli cell line (MSC-1) or a mouse granulosa cell line (KK-1) transfected with the rFSHR.Additional experiments using a series of C-terminal deletions of the rFSHR and the hFSHR showed that the recycling of the internalized FSH-FSHR complex and the extent of hFSH-induced down-regulation is dictated by a short stretch of amino acids present at the extreme C-terminal end of the receptor.We conclude that most of the internalized FSH-FSHR complex is recycled back to the cell surface, that this recycling pathway is highly dependent on amino acid residues present near the C terminus of the FSHR, and that it is an important determinant of the extent of down-regulation of the FSHR.  相似文献   

4.
The beta(2)-adrenergic receptor and delta opioid receptor represent distinct G protein-coupled receptors that undergo agonist-induced endocytosis via clathrin-coated pits but differ significantly in their postendocytic sorting between recycling and degradative membrane pathways, respectively. Previous results indicate that a distal portion of the carboxyl-terminal cytoplasmic domain of the beta(2)-adrenergic receptor, which engages in PDZ domain-mediated protein interaction, is required for efficient recycling of receptors after agonist-induced endocytosis. Here we demonstrate that a four-residue sequence (DSLL) comprising the core of this protein interaction domain functions as a transplantable endocytic sorting signal that is sufficient to re-route endocytosed delta opioid receptor into a rapid recycling pathway, to inhibit proteolytic down-regulation of receptors, and to mediate receptor-autonomous sorting of mutant receptors from the wild type allele when co-expressed in the same cells. These observations define a transplantable signal mediating rapid recycling of a heterologous G protein-coupled receptor, and they suggest that rapid recycling of certain membrane proteins does not occur by bulk membrane flow but is instead mediated by a specific endocytic sorting mechanism.  相似文献   

5.
We have investigated whether Ezrin-radixin-moesin (ERM)-binding phosphoprotein-50/Na(+)/H(+) exchanger regulatory factor (EBP50/NHERF), a PDZ domain-containing phosphoprotein, is associated with the human kappa opioid receptor (hkor) and whether it regulates the trafficking and signaling of the hkor. When expressed in CHO cells stably transfected with the FLAG-tagged hkor (FLAG-hkor), EBP50/NHERF co-immunoprecipitated with FLAG-hkor, and the PDZ domain I, but not the PDZ domain II, of EBP50/NHERF was involved in the interaction. Treatment with the agonist (-)-(trans)-3,4- dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclohexyl]benzeneacetamide (U50,488H) enhanced the association of EBP50/NHERF with FLAG-hkor. Expression of EBP50/NHERF, but not a truncated form lacking the ERM-binding domain, abolished U50,488H-induced down-regulation of FLAG-hkor, which was apparently due to an increase in the recycling rate of internalized receptors. However, expression of EBP50/NHERF did not affect U50,488H binding affinity and U50,488H-stimulated [(35)S]guanosine 5'-3-O-(thio)triphosphate binding and p42/p44 MAP kinase activation, nor did it affect U50,488H-induced desensitization and internalization of FLAG-hkor. To determine the motif of FLAG-hkor involved in EBP50/NHERF binding, we generated two mutants, FLAG-hkor-A and FLAG-hkor-EE, in which one Ala or two Glu residues were added to the C terminus, respectively. Neither FLAG-hkor-A nor FLAG-hkor-EE co-immunoprecipitated with EBP50/NHERF, and U50,488H-induced down-regulation of FLAG-hkor-A and FLAG-hkor-EE were not affected by expression of EBP50/NHERF. Thus, EBP50/NHERF binds to the C terminus of FLAG-hkor and blocks the down-regulation of FLAG-hkor. The C-terminal sequence of the hkor, NKPV, is distinctly different from the sequence D(S/T)XL, the optimal C-terminal motif in the beta(2)-adrenergic receptor for EBP50/NHERF binding. EBP50/NHERF may have a broader binding specificity and may interact with a subset of G protein-coupled receptors to serve as a recycling signal for these receptors.  相似文献   

6.
A deletion between amino acid residues Ser(895) and Val(1075) in the carboxyl terminus of the human calcium receptor (hCaR), which causes autosomal dominant hypocalcemia, showed enhanced signaling activity and increased cell surface expression in HEK293 cells (Lienhardt, A., Garabédian, M. G., Bai, M., Sinding, C., Zhang, Z., Lagarde, J. P., Boulesteix, J., Rigaud, M., Brown, E. M., and Kottler, M. L. (2000) J. Clin. Endocrinol. Metab. 85, 1695-1702). To identify the underlying mechanism(s) for these increases, we investigated the effects of carboxyl tail truncation and deletion in hCaR mutants using a combination of biochemical and cell imaging approaches to define motifs that participate in regulating cell surface numbers of this G protein-coupled receptor. Our data indicate a rapid constitutive receptor internalization of the cell surface hCaR, accumulating in early (Rab7 positive) and late endosomal (LAMP1 positive) sorting compartments, before targeting to lysosomes for degradation. Recycling of hCaR back to the cell surface was also evident. Truncation and deletion mapping defined a 51-amino acid sequence between residues 920 and 970 that is required for targeting to lysosomes and degradation but not for internalization or recycling of the receptor. No singular sequence motif was identified, instead the required sequence elements seem to distribute throughout this entire interval. This interval includes a high proportion of acidic and hydroxylated amino acid residues, suggesting a similarity to PEST-like degradation motif (PESTfind score of +10) and several glutamine repeats. The results define a novel large PEST-like sequence that participates in the sorting of internalized hCaR routed to the lysosomal/degradation pathway that regulates cell surface receptor numbers.  相似文献   

7.
By using a yeast two-hybrid screen we identified GIPC (GAIP-interacting protein C terminus), a protein with a type I PDZ domain as a novel human lutropin receptor (hLHR) binding partner. Pull-down and immunoprecipitation assays confirmed this interaction and showed that it is dependent on the PDZ domain of GIPC and the C-terminal tetrapeptide of the hLHR. To characterize the functional consequences of the GIPC-hLHR interaction, we used a small interfering RNA against GIPC to generate a clonal cell line that is deficient in GIPC. Studies with this cell line reveal that GIPC is partially responsible for the recycling of the hormone that is internalized by the hLHR and also for maintaining a relatively constant level of hLHR at the cell surface during hormone internalization.  相似文献   

8.
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.  相似文献   

9.
Plasma membrane recycling of G protein-coupled receptors can occur by at least two distinct mechanisms as follows: a "default" mechanism that occurs nonselectively, and a specifically sorted mechanism that requires the endosome-associated protein Hrs. In this study we have defined a sequence in the beta2-adrenergic receptor cytoplasmic tail that confers Hrs dependence on receptor recycling. This sequence resembles acidic dileucine class motifs found in other membrane proteins but is structurally and functionally distinct from previously identified sorting sequences. Mutation of the novel sorting sequence rendered plasma membrane recycling independent of Hrs and independent of a distal PDZ ligand required for Hrs-dependent recycling. We propose that the novel sorting sequence functions to "switch" endocytic trafficking between mechanistically distinct recycling modes, thereby explaining failure of the wild type beta2-adrenergic receptor to recycle efficiently by default.  相似文献   

10.
A fundamental question in biology is how the various motifs in G protein-coupled receptors participate in the divergent functions orchestrated by these molecules. Here we describe a fundamental role for a serine residue at position 312 in the third intracellular loop of the human beta(1)-adrenergic receptor (beta(1)-AR) in endocytic recycling of the agonist-internalized receptor. In receptor recycling experiments that were monitored by confocal microscopy, the agonist-internalized wild-type (WT) beta(1)-AR recycled with a t(0.5) of 14 +/- 3 min. Mutagenesis of Ser(312) to alanine (Ser(312) --> Ala beta(1)-AR) or to the phosphoserine mimic aspartic acid (Ser(312) --> Asp beta(1)-AR) resulted in beta(1)-AR constructs that were pharmacologically indistinguishable from the WT beta(1)-AR. The internalized Ser(312) --> Asp beta(1)-AR recycled efficiently with a t(0.5) of 11 +/- 3 min, whereas the internalized Ser(312) --> Ala beta(1)-AR was not recycled or functionally resensitized through the endosomal pathway. Because this serine is a putative residue for phosphorylation by the cyclic AMP-dependent protein kinase (PKA), we examined the role of this kinase in recycling of the internalized beta(1)-AR. Inhibition of PKA biochemically or genetically using a dominant negative PKA construct blocked the recycling of the internalized WT beta(1)-AR. Phosphorylation studies revealed that the beta(1)-AR is partially phosphorylated by PKA and that phosphorylation of the beta(1)-AR by the catalytic subunit of PKA occurs exclusively at Ser(312). Our results identify a new signaling paradigm in which homologous activation of a kinase provides a reversible modification that shifts the itinerary of the internalized receptor toward recycling and resensitization. Therefore, PKA-mediated phosphorylation of G protein-coupled receptors might result in motif-dependent desensitization or resensitization.  相似文献   

11.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

12.
The human complement 5a (C5a) anaphylatoxin receptor (CD88) is a G protein-coupled receptor involved in innate host defense and inflammation. Upon agonist binding, C5a receptor (C5aR) undergoes rapid phosphorylation on the six serine residues present in the C-terminal region followed by desensitization and internalization. Using confocal immunofluorescence microscopy and green fluorescent protein-tagged beta-arrestins (beta-arr 1- and beta-arr 2-EGFP) we show a persistent complex between C5aR and beta-arrestins to endosomal compartments. Serine residues in the C5aR C terminus were identified that control the intracellular trafficking of the C5aR-arrestin complex in response to C5a. Two phosphorylation mutants C5aR-A(314,317,327,332) and C5aR-A(314,317,332,334), which are phosphorylated only on Ser(334)/Ser(338) and Ser(327)/Ser(338), respectively, recruited beta-arr 1 and were internalized. In contrast, the phosphorylation-deficient receptors C5aR-A(334,338) and C5aR-A(332,334,338) were not internalized even though observations by confocal microscopy indicated that beta-arr 1-EGFP and/or beta-arr 2-EGFP could be recruited to the plasma membrane. Altogether the results indicate that C5aR activation is able to promote a loose association with beta-arrestins, but phosphorylation of either Ser(334)/Ser(338) or Ser(327)/Ser(338) is necessary and sufficient for the formation of a persistent complex. In addition, it was observed that C5aR endocytosis was inhibited by the expression of the dominant negative mutants of dynamin (K44E) and beta-arrestin 1 (beta-arr 1-(319-418)-EGFP). Thus, the results suggest that the C5aR is internalized via a pathway dependent on beta-arrestin, clathrin, and dynamin.  相似文献   

13.
Rapid modulation of the surface number of certain ionotropic receptors is achieved by altering the relative rates of insertion and internalization. These receptors are internalized by a clathrin-mediated pathway; however, a motif that is necessary for endocytosis of ionotropic receptors has not yet been identified. Here, we identified a motif that is required for constitutive and agonist-regulated internalization of the ionotropic P2X(4) receptor. Three amino acids in the C terminus of P2X(4) (Tyr(378), Gly(381), and Leu(382)) compose a non-canonical tyrosine-based sorting signal of the form YXXGL. We found that P2X(4) protein was present in clathrin-coated vesicles isolated from rat brain and that a glutathione S-transferase fusion of the P2X(4) C terminus pulled down the adaptor protein-2 complex from brain extract. Mutation of either the tyrosine-binding pocket of the mu2 subunit of adaptor protein-2 or the YXXGL motif in the receptor C terminus caused a decrease in receptor internalization and a dramatic increase in the surface expression of P2X(4) receptors. The YXXGL motif represents a non-canonical tyrosine-based sorting signal that is necessary for efficient endocytosis of the P2X(4) receptor. Similar motifs are present in other receptors and may be important for the control of their functional expression.  相似文献   

14.
After stimulation by ligand, most G protein-coupled receptors (GPCRs) undergo rapid phosphorylation, followed by desensitization and internalization. In the case of the N-formyl peptide receptor (FPR), these latter two processing steps have been shown to be entirely dependent on phosphorylation of the receptor's carboxy terminus. We have previously demonstrated that FPR internalization can occur in the absence of receptor desensitization, indicating that FPR desensitization and internalization are regulated differentially. In this study, we have investigated whether human chemoattractant receptors internalize via clathrin-coated pits. Internalization of the FPR transiently expressed in HEK 293 cells was shown to be dependent upon receptor phosphorylation. Despite this, internalization of the FPR, as well as the C5a receptor, was demonstrated to be independent of the actions of arrestin, dynamin, and clathrin. In addition, we utilized fluorescence microscopy to visualize the FPR and beta(2)-adrenergic receptor as they internalized in the same cell, revealing distinct sites of internalization. Last, we found that a nonphosphorylatable mutant of the FPR, unable to internalize, was competent to activate p44/42 MAP kinase. Together, these results demonstrate not only that the FPR internalizes via an arrestin-, dynamin-, and clathrin-independent pathway but also that signal transduction to MAP kinases occurs in an internalization-independent manner.  相似文献   

15.
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.  相似文献   

16.
Several hormones, serum proteins, toxins, and viruses are brought into the cell by receptor-mediated endocytosis. Initially, many of these molecules and particles are internalized into a common endocytic compartment via the clathrin-coated pit pathway. Subsequently, the ligands and receptors are routed to several destinations, including lysosomes, the cytosol, or the plasma membrane. We have examined the mechanism by which sorting of internalized molecules occurs. A key step in the process is the rapid acidification of endocytic vesicles to a pH of 5.0-5.5 This acidification allows dissociation of several ligands from their receptors, the release of iron from transferrin, and the penetration of diphtheria toxin and some viral nucleocapsids into the cytoplasm. Transferrin, a ligand that cycles through the cell with its receptor, has been used as a marker for the recycling receptor pathway. We have found that in Chinese hamster ovary (CHO) cells transferrin is rapidly segregated from other ligands and is routed to a complex of small vesicles and/or tubules near the Golgi apparatus. The pH of the transferrin-containing compartment is approximately 6.4, indicating that it is not in continuity with the more acidic endocytic vesicles which contain ligands destined to be degraded in lysosomes.  相似文献   

17.
Phosphatidylinositol 3-kinase inhibitors have been shown to affect endocytosis or subsequent intracellular sorting in various receptor systems. Agonist-activated beta(2)-adrenergic receptors undergo desensitization by mechanisms that include the phosphorylation, endocytosis and degradation of receptors. Following endocytosis, most internalized receptors are sorted to the cell surface, but some proportion is sorted to lysosomes for degradation. It is not known what governs the ratio of receptors that recycle versus receptors that undergo degradation. To determine if phosphatidylinositol 3-kinases regulate beta(2)-adrenergic receptor trafficking, HEK293 cells stably expressing these receptors were treated with the phosphatidylinositol 3-kinase inhibitors LY294002 or wortmannin. We then studied agonist-induced receptor endocytosis and postendocytic sorting, including recycling and degradation of the internalized receptors. Both inhibitors amplified the internalization of receptors after exposure to the beta-agonist isoproterenol, which was attributable to the sorting of a significant fraction of receptors to an intracellular compartment from which receptor recycling did not occur. The initial rate of beta(2)-adrenergic receptor endocytosis and the default rate of receptor recycling were not significantly altered. During prolonged exposure to agonist, LY294002 slowed the degradation rate of beta(2)-adrenergic receptors and caused the accumulation of receptors within rab7-positive vesicles. These results suggest that phosphatidylinositol 3-kinase inhibitors (1) cause a misrouting of beta(2)-adrenergic receptors into vesicles that are neither able to efficiently recycle to the surface nor sort to lysosomes, and (2) delays the movement of receptors from late endosomes to lysosomes.  相似文献   

18.
The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation.  相似文献   

19.
Somatostatin receptor (SSTR) endocytosis influences cellular responsiveness to agonist stimulation and somatostatin receptor scintigraphy, a common diagnostic imaging technique. Recently, we have shown that SSTR1 is differentially regulated in the endocytic and recycling pathway of pancreatic cells after agonist stimulation. Additionally, SSTR1 accumulates and releases internalized somatostatin-14 (SST-14) as an intact and biologically active ligand. We also demonstrated that SSTR2A was sequestered into early endosomes, whereas internalized SST-14 was degraded by endosomal peptidases and not routed into lysosomal degradation. Here, we examined the fate of peptide agonists in rat insulinoma cells expressing SSTR3 by biochemical methods and confocal laser scanning microscopy. We found that [(125)I]Tyr11-SST-14 rapidly accumulated in intracellular vesicles, where it was degraded in an ammonium chloride-sensitive manner. In contrast, [(125)I]Tyr1-octreotide accumulated and was released as an intact peptide. Rhodamine-B-labeled SST-14, however, was rapidly internalized into endosome-like vesicles, and fluorescence signals colocalized with the lysosomal marker protein cathepsinD. Our data show that SST-14 was cointernalized with SSTR3, was uncoupled from the receptor, and was sorted into an endocytic degradation pathway, whereas octreotide was recycled as an intact peptide. Chronic stimulation of SSTR3 also induced time-dependent downregulation of the receptor. Thus, the intracellular processing of internalized SST-14 and the regulation of SSTR3 markedly differ from the events mediated by the other SSTR subtypes.  相似文献   

20.
G protein-coupled receptors form the largest family of membrane receptors and transmit diverse ligand signals to modulate various cellular responses. After activation by their ligands, some of these G protein-coupled receptors are desensitized, internalized (endocytosed), and down-regulated (degraded). In HEK 293 cells, the G(s)-coupled beta2-adrenergic receptor was postulated to initiate a second wave of signaling, such as the activation of the mitogen-activated protein kinase (MAPK) pathway after the receptor is internalized. The tyrosine kinase c-Src plays a critical role in these events. Here we used mouse embryonic fibroblast (MEF) cells deficient in Src family tyrosine kinases to examine the role of Src in beta2-adrenergic receptor signaling to the MAPK pathway and in receptor internalization. We found that in Src-deficient cells the beta2-adrenergic receptor could activate the MAPK pathway. However, the internalization of beta2-adrenergic receptors was blocked in Src-deficient MEF cells. Furthermore, we observed that in MEF cells deficient in beta-arrestin 2 the internalization of the beta2-adrenergic receptor was impaired, whereas the activation of the MAPK pathway by the beta2-adrenergic receptor was normal. Our data demonstrate that although Src and beta-arrestin 2 play essential roles in beta2-adrenergic receptor internalization, they are not required for the activation of the MAPK pathway by the beta2-adrenergic receptor. In other words, our finding suggests that receptor internalization is not required for beta2-adrenergic receptor signaling to the MAPK pathway in MEF cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号