首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The objective of this work was to produce doubled haploid plants from durum wheat through the induction of androgenesis. A microspore culture technique was developed and used to produce fertile doubled haploid plants of agronomic interest. Five cultivars, one selected line, plus a collection of 20 F1 crosses between different genotypes of high breeding value were used. Studies on several factors such as pre-treatments and media components were carried out in order to develop a protocol to regenerate green haploid plantlets. Anthers were pre-treated in 0.7 M mannitol. Microspores, from anther maceration, were plated on a C17 induction culture medium with ovary co-culture. The optimum regeneration medium J25–8 was used. From 35 microspore isolations, 407 green plantlets were obtained. With this technique mature embryos were obtained. Green plants were regenerated from all genotypes used and approximately 67% of them were spontaneously doubled haploids. Some haploids and a very few polyploids plants were obtained. From the 407 plants, 275 were completely fertile and gave enough seeds to be assayed in the field. This protocol could be used complementary to or instead of the intergeneric crossing with maize as an economically feasible method to obtain doubled haploids from most durum wheat genotypes.  相似文献   

2.
The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C17 induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars ‘Ciccio’ and ‘Claudio’ an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F1 crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named ‘Lanuza’, has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.  相似文献   

3.
The aim of this work was to study the effects of colchicine application on chromosome doubling and androgenic response in anther and microspore culture of different bread wheat genotypes. Colchicine was applied during a mannitol stress pretreatment or during the first 48 h of culture at concentrations of 0, 150 and 300 mg l−1. When colchicine was applied during stress pretreatment, the percentage of doubling depended on genotype and concentration. A significant increase in doubling was observed with 300 mg l−1 in the low androgenic responding cv. Caramba. Colchicine incorporation during the first hours of culture improved percentage of doubling in all genotypes, in both anther and microspore culture. Application of 300 mg l−1 colchicine improved the percentage of doubling in the two low responding genotypes, to 118% of control in DH24033, and 75% in Caramba in microspore and anther culture, respectively. Concerning the androgenic response, the effect of colchicine on embryo formation and percentage of green plants depended on the genotype and on the culture method. In cv. Pavon, a 2- and a 3-fold increase in percentage of embryogenesis and green plants, respectively, were obtained with 300 mg l−1 colchicine in microspore culture. However, no significant differences in these two variables were observed in anther culture. The number of green doubled haploid (DH) plants reflects the index of success of the procedure. Regardless of the culture method, when colchicine was incorporated during the first hours of culture, the number of green DH plants increased significantly in three of four genotypes. These results confirm the usefulness of colchicine application during the first hours of culture in wheat breeding programs.  相似文献   

4.
The aim of this study was the improvement of embryo production in wheat anther culture. Three butanol alcohols, n-butanol, sec-butanol and tert-butanol, were evaluated for their effect on microspore embryogenesis in two spring cultivars of wheat, Pavon and Caramba. Application of n-butanol, at 0.1 and 0.2% (v/v) in the induction media for 5 h, highly improved embryo production in both cultivars. Sec- and tert-butanol performed similarly to control plates. Regeneration ability was unaffected by any butyl-alcohol treatment. As a consequence of the higher embryo production after n-butanol treatment, the number of green regenerated plants increased up to five times in cultivar Pavon and up to three times in cultivar Caramba. The percentage of green plants was improved or unaffected by the treatment. Doubled haploid plant production was between 2 and 4 times higher after n-butanol treatment than in control plates. Therefore, n-butanol was successfully applied in the production of wheat doubled haploids. This primary alcohol is known as an activator of phospholipase D and has been previously reported to disrupt cortical microtubules and detach them from the plasma membrane in plants. Its effects on androgenetic induction could confirm the importance of microtubule regulation in plant cell fate, specifically in microspore development. A possible implication of phospholipase D is discussed.  相似文献   

5.
The hybridoiogical analysis was provided on several durum wheat genotypes with utilizing three F2 populations developed from the crossing between parental forms that differed in the invariable malt-zone triplet on elecirophoretic spectrum of α-amylase. Three components of this zone are controlled by three genes with an independent way of inheritance: one of them is located on the 6B or 5B chromosome, and two genes are located on the chromosomes of A subgenome. The article is published in the original.  相似文献   

6.
We describe the application of complexity reduction of polymorphic sequences (CRoPS®) technology for the discovery of SNP markers in tetraploid durum wheat (Triticum durum Desf.). A next-generation sequencing experiment was carried out on reduced representation libraries obtained from four durum cultivars. SNP validation and minor allele frequency (MAF) estimate were carried out on a panel of 12 cultivars, and the feasibility of genotyping these SNPs in segregating populations was tested using the Illumina Golden Gate (GG) technology. A total of 2,659 SNPs were identified on 1,206 consensus sequences. Among the 768 SNPs that were chosen irrespective of their genomic repetitiveness level and assayed on the Illumina BeadExpress genotyping system, 275 (35.8%) SNPs matched the expected genotypes observed in the SNP discovery phase. MAF data indicated that the overall SNP informativeness was high: a total of 196 (71.3%) SNPs had MAF >0.2, of which 76 (27.6%) showed MAF >0.4. Of these SNPs, 157 were mapped in one of two mapping populations (Meridiano × Claudio and Colosseo × Lloyd) and integrated into a common genetic map. Despite the relatively low genotyping efficiency of the GG assay, the validated CRoPS-derived SNPs showed valuable features for genomics and breeding applications such as a uniform distribution across the wheat genome, a prevailing single-locus codominant nature and a high polymorphism. Here, we report a new set of 275 highly robust genome-wide Triticum SNPs that are readily available for breeding purposes.  相似文献   

7.
A simple anther culture protocol for Australian spring wheat cultivars was developed using ovary co-culture. The inclusion of ovaries in the induction medium significantly increased the production of embryo-like structures (ELS), green and albino plants in two spring wheat cultivars tested. When five ovaries were added to the induction medium, the mean number of ELS per spike increased from 7.6 to 50.1 and green plants per spike increased from 0.6 to 8.9. The addition of 10 ovaries, however, did not further increase the production of ELS or green plants. The growth regulator combination of 2,4-D and KIN was compared with IAA and BA. There were no significant differences in the numbers of ELS or green plants although significantly fewer albino plants were produced with IAA and BA. Eight additional cultivars were screened using the protocol with either 5 or 10 ovaries in the induction medium. Green plants were obtained from nine varieties at frequencies ranging from 0.3 to 33.0 green plants per spike. Regenerant plants at maturity exhibited chromosome fertility rates in different cultivars ranging from 15% to 100%.  相似文献   

8.
The inability to induce rooting of in vitro-established Protea cynaroides microshoots has prevented the production of complete plantlets. A successful shoot-tip micrografting technique was developed using in vitro-germinated P. cynaroides seedlings as rootstocks and axenic microshoots established from pot plants as microscions. Thirty-day old seedlings, germinated on growth-regulator-free, half-strength Murashige and Skoog medium, were decapitated and a vertical incision made from the top end. The bottom ends of microshoots established on modified Murashige and Skoog medium were cut into a wedge (‘V’) shape, and placed into the incision. The micrografted explants were cultured in a growth chamber with the temperature adjusted to 25 ± 2°C, with a 12-h photoperiod. Best results were obtained by placing the microscions directly onto the rootstock without any pre-treatments. Dipping the explants in anti-oxidant solution or placing a layer of medium around the graft area led to the blackening of the microscion.  相似文献   

9.
Haploid plants were regenerated in vitro from unpollinated ovules of niger (Guizotia abyssinica (L. f.) (Cass.) on Murashige and Skoog nutrient medium (MS) supplemented with 10 μM naphthaleneacetic acid or 10 μM NAA + 1.5 μM kinetin and 30 g/l sucrose. Gamborg (B5) medium was the best for plant regeneration (in comparison with MS, Nitsch and Nitsch (NN), and Chu (N6) media) from cultured ovules, and 6.66 and 7.33 ovules of JNC-6 and Ootacamund cultivars were involved in direct plant regeneration on this medium. Matured ovules (ovules collected one day before anthesis or on the day of anthesis) only responded to cultural regimes and involved in direct plantlet development. Cytological preparation of root tips and chloroplast counts in the guard cells of leaf stomata of regenerated plants confirmed their haploid nature. This text was submitted by the authors in English.  相似文献   

10.
11.
Two wheat (Triticum aestivum L.) cultivars contrasting in architectonics and differing in drought resistance, Azamatli-95 (short stature, vertically oriented small leaves, drought-tolerant) and Giymatli-2/17 (short stature, broad and drooping leaves, drought-sensitive), were studied. It was found that the content of CP I (115 kDa) and 63-kDa apoprotein P700 and also LHC II polypeptides increases slightly in the drought-resistant cv. Azamatli-95 under extreme water supply limitation, while their content decreases in drought-sensitive cv. Giymatli-2/17. The intensity of synthesis of α- and β-subunits of CF1 (55 and 53.5 kDa) and 33–30.5 kDa proteins also decreases in the sensitive genotype. The intensity of short wavelength peaks at 687 and 695 nm sharply increases in the fluorescence spectra (77K) of chloroplasts from Giymatli-2/17 under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. After exposure to drought, cv. Giymatli-2/17 shows a larger reduction in the actual PS II photochemical efficiency of chloroplasts than cv. Azamatli-95. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 8, pp. 1109–1116.  相似文献   

12.
The genetic control of tolerance to NaCl (0.7 MPa, 9.8 g/l) was studied in six durum wheat accessions from the world collection of the Vavilov Institute of Plant Industry. Analysis of F1, F2, and F3 of the crosses between tolerant forms and a in accessions k-17227 and k-10930susceptible tester has demonstrated that a high salt tolerance is determined by one dominant gene; in accession k-46660, by three independent dominant genes; and in accessions k-15305 and k-41884, by single genes without dominance effect. Potential allelism of the salt tolerance genes has been studied for the accessions with monogenically determined salt tolerance, and either identity or tight linkage of the genes determining salt tolerance of accessions k-15305 and k-41884 has been demonstrated. Provisional designations Tsa1, Tsa2, and Tsa3 are proposed for the genetic factors determining salt tolerance of accessions k-10930, k-17227, and k-15305, respectively.  相似文献   

13.
14.
Callus cultures derived from leaf segments of chrysanthemum cultivar ‘Snow Ball’ which was susceptible to Septoria obesa were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant cell lines were selected by culturing callus on growth medium containing various concentrations of S. obesa filtrate. Resistant calluses obtained after two cycles (30 d each cycle) of selection were used for plant regeneration. About 30% of the plants regenerated from the resistant calluses and 70–80% of the plants raised from cuttings had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

15.
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20–34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Yellow pigment content in durum wheat (Triticum turgidum L. ssp. durum) is an important criterion for both pasta bright yellow color and human health because of antioxidant properties of carotenoids involved in this pigmentation. In the present study, QTLs for yellow pigment content in durum wheat were mapped in a population of 140 RILs developed from a intraspecific cross between a released variety (PDW 233) and a landrace (Bhalegaon 4). This trait was evaluated in one location for 3 years and in two more locations for one additional year (five different year × location combinations further called “environments”). Yellow pigment content was highly heritable across the five different environments. Analysis of variance showed the significant effect of genotype, environment and genotype × environment interaction on the trait. Five different QTLs linked to yellow pigment content were identified on chromosome 1A, 3B, 5B, 7A and 7B across five different environments. The strongest one located on the distal part of the long arm of chromosome 7A, QYp.macs-7A, explained 55.22% of the variation in the trait, while, remaining four QTLs explained 5–8.75% of phenotypic variation in yellow pigment content. Marker analysis revealed significant association of one ISSR and one AFLP fragment with the trait. These two markers were linked to the major QTL QYp.macs-7A and were converted into SCAR markers. These SCAR markers were further validated on another population as well as 38 diverse genotypes so as to prove their potential in marker assisted selection. These markers will be very useful for the marker assisted breeding of durum wheat for higher yellow pigment content.  相似文献   

17.
Mammillaria species are the most numerous within Cactaceae family, and some of them are threatened with extinction as a result of human activities. In this work, results of in vitro propagation are presented for ten Mammillaria species, testing 20 combinations of indole-3-acetic acid (IAA) and kinetin. Best results on shoot formation were obtained using kinetin at two levels: 27.9 and 46.5 μM. All IAA levels tested were able to induce de novo shoot formation in M. bocasana, M. densispina, M. hahniana, M. hutchisoniana, M. orcutii, M. pectinifera, M. perbella, M. picta, M. rhodantha, and M. zephyranthoides. Depending on the IAA level tested, four responding groups were observed concerning their highest shoot-formation number. For all species, the highest average of shoot formation was achieved with 5.7:46.5 or 11.4:46.5 μM IAA/kinetin, yielding 4.8 and 4.7 shoots per explant, respectively, in 60 d. Rooting of regenerated shoots was achieved by leaving the explants in their shoot-induction medium or transferring them to half-strength MS medium. Hardening of regenerated plants was successfully achieved by planting them in peat moss substrate after a desiccation treatment at room temperature for 3 d.  相似文献   

18.
19.
An efficient and improved in vitro propagation system for Spilanthes acmella L. using transverse thin cell layer (tTCL) culture system was established. The frequency of shoot regeneration from tTCL nodal segments was affected by concentrations of plant growth regulators and orientation of the explant. MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium with 5.0 mg dm−3 BAP was optimal for shoot regeneration. Upon this medium, the explant inoculated in the upright orientation exhibited a high frequency of shoot regeneration (about 97%), and the highest number of shoots (31.5) per explant. The intact node (1.0–1.5 cm) cultured on the same medium had significantly lower shoot multiplication ability with only 4.5 shoots per responsive explant. As compared to BAP alone, the combination of BAP and Kin or NAA did not have positive effects on shoot multiplication from tTCL nodal segments. Rooting of shoots was achieved on growth regulator free full-strength MS medium. Plantlets were transplanted into soil with 90–100% survival rate.  相似文献   

20.
There are three most important bacterial causative agents of serious infections that could be misused for warfare purposes: Bacillus anthracis (the causative agent of anthrax) is the most frequently mentioned one; however, Fracisella tularensis (causing tularemia) and Yersinia pestis (the causative agent of plague) are further bacterial agents enlisted by Centers for Disease Control and Prevention into the category A of potential biological weapons. This review intends to summarize basic information about these bacterial agents. Military aspects of their pathogenesis and the detection techniques suitable for field use are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号