首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
The role of tumor stroma in regulation of breast cancer growth has been widely studied. However, the details on the type of heterocellular cross-talk between stromal and breast cancer cells (BCCs) are still poorly known. In the present study, in order to investigate the intercellular communication between human mesenchymal stromal cells (hMSCs) and breast cancer cells (BCCs, MDA-MB-231), we recruited cell-internalizing quantum dots (i-QD) generated by conjugation of cell-internalizing anti-mortalin antibody and quantum dots (QD). Co-culture of illuminated and color-coded hMSCs (QD655) and BCCs (QD585) revealed the intercellular transfer of QD655 signal from hMSCs to BCCs. The amount of QD double positive BCCs increased gradually within 48 h of co-culture. We found prominent intercellular transfer of QD655 in hanging drop co-culture system and it was non-existent when hMSCs and BBCs cells were co-cultured in trans-well system lacking imminent cell–cell contact. Fluorescent and electron microscope analyses also supported that the direct cell-to-cell interactions may be required for the intercellular transfer of QD655 from hMSCs to BCCs. To the best of our knowledge, the study provides a first demonstration of transcellular crosstalk between stromal cells and BCCs that involve direct contact and may also include a transfer of mortalin, an anti-apoptotic and growth-promoting factor enriched in cancer cells.  相似文献   

3.
4.
Foxp3+CD4+ regulatory T cells (Treg) control not only autoimmunity but also the effective immune response against RNA virus infections, which produces virus-derived double-stranded RNA (dsRNA). To induce effective anti-viral immunity, it is a key issue to learn how Treg respond to dsRNA in vitro and in vivo. We here showed that synthetic dsRNA, polyI:C, caused peripheral expansion of functional Treg in a TICAM-1- and IL-6-dependent manner in vivo. PolyI:C did not expand Treg directly, but promoted the expansion of naturally occurring Treg indirectly through IL-6 produced from dendritic cells (DCs). In addition, the expansion of Treg by IL-6 was inhibited by IFN-α from polyI:C-stimulated DCs. These data suggest that the balance of IL-6 and IFN-α in the region of RNA virus infection may determine the number of peripheral Treg, which affects the effective immune responses against viruses.  相似文献   

5.
6.
Indole-3-carbinol (I3C) is a natural anti-carcinogenic compound found at high concentrations in Brassica vegetables. I3C was recently reported to inhibit neutrophil elastase (NE) activity, while consequently limiting the proteolytic processing of full length cyclin E into pro-tumorigenic low molecular weight cyclin E (LMW-E). In this study, we hypothesized that inhibition of NE activity and resultant LMW-E generation is critical to the anti-tumor effects of I3C. LMW-E was predominately expressed by ERα-negative breast cancer cell lines. However, ERα-positive cell lines demonstrated the greatest sensitivity to the anti-tumor effects of I3C and its more potent N-alkoxy derivatives. We found that I3C was incapable of inhibiting NE activity or the generation of LMW-E. Therefore, this pathway did not contribute to the anti-tumor activity of I3C. Gene expression analyzes identified ligand-activated aryl hydrocarbon receptor (AhR), which mediated sensitivity to the anti-tumor effects of I3C in ERα-positive MCF-7 cells. In this model system, the reactive oxygen species (ROS)-induced upregulation of ATF-3 and pro-apoptotic BH3-only proteins (e.g. NOXA) contributed to the sensitivity of ERα-positive breast cancer cells to the anti-tumor effects of I3C. Overexpression of ERα in MDA-MB-231 cells, which normally lack ERα expression, increased sensitivity to the anti-tumor effects of I3C, demonstrating a direct role for ERα in mediating the sensitivity of breast cancer cell lines to I3C. Our results suggest that ERα signaling amplified the pro-apoptotic effect of I3C-induced AhR signaling in luminal breast cancer cell lines, which was mediated in part through oxidative stress induced upregulation of ATF-3 and downstream BH3-only proteins.  相似文献   

7.
Peroxiredoxin 2 (Prdx2) is a member of the peroxiredoxin family, which is responsible for neutralizing reactive oxygen species. Prdx2 has been found to be elevated in several human cancer cells and tissues, including colorectal cancer (CRC), and it influences diverse cellular processes involving cells’ survival, proliferation, and apoptosis, which suggests a possible role for Prdx2 in the maintenance of cancer cell. However, the mechanism by which Prdx2 modulates CRC cells’ survival is unknown. The current study aimed to determine the effect of elevated Prdx2 on CRC cells and to further understand the underlying mechanisms. The results of this study showed that Prdx2 was upregulated in CRC tissues compared with the matched noncancer colorectal mucosa tissues and that Prdx2 expression was positively associated with tumor metastasis and the TNM stage. In the LoVo CRC cell line, Prdx2 was upregulated at both the RNA and protein levels compared with the normal FHC colorectal mucosa cell line. In addition, the LoVo CRC cell line was significantly more resistant to hydrogen peroxide (H2O2)-induced apoptosis because of a failure to activate pro-apoptotic pathways in contrast to Prdx2 knockdown cells. Suppression of Prdx2 using a lentiviral vector-mediated Prdx2-specific shRNA in the LoVo cell line restored H2O2 sensitivity. Our results suggested that Prdx2 has an essential role in regulating oxidation-induced apoptosis in CRC cells. Prdx2 may have potential as a therapeutic target in CRC.  相似文献   

8.
Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45 gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3 and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β and IL-6 inflammatory cytokines.  相似文献   

9.
Kikuchi K  Li X  Zheng Y  Takano Y 《FEBS letters》2011,(2):286-290
Invasion of MDA-MB-231 breast cancer cells into three-dimensional (3-D) type I-collagen matrices depends on TGF-α. We characterized the steps of invasion mediated by TGF-α. Cell migration, as observed by videomicroscopy, was effectively stimulated by collagen, suggesting that TGF-α may specifically participate in the invasion of a 3-D collagen matrix. We assessed the role of small GTPases of the Rho family in the invasion. Cdc42 was found to be necessary for invasion but dispensable for cell migration. These results suggest that TGF-α mediates invasion into 3-D collagen matrices by initiating the formation of protrusions into collagen, likely through activation of Cdc42.

Structured summary

PAKphysically interacts with Rac1 by pull down (View interaction)PAKphysically interacts with CDC42 by pull down (View interaction)  相似文献   

10.
The present study describes the characterization and evaluation of novel anticancer conjugates, 2,6-diisopropylphenol–docosahexaenoate (PP–DHA), and its analogues including 2,4-diisopropylphenol–docosahexaenoate (DIPP–DHA), 2-isopropylphenol–docosahexaenoate (IPP–DHA), 2-cyclohexanephenol-docosahexaenoate (CHP–DHA) and phenol–docosahexaenoate (P–DHA) on breast cancer cell lines. Representative breast cancer cell lines, based on estrogen α receptor (ER) and oncogene Her-2 expression, were used and include MDA-MB-231 (ER-negative, Her-2-negative), MCF-7 (ER-positive, Her-2-negative) AU565 (ER-negative, Her-2-positive) and MDA-MB-361 (ER-positive, Her-2-positive). The PP–DHA conjugate significantly inhibited cell growth and induced cell loss in the breast cancer cell lines similarly; however, this conjugate was not effective against normal mammary epithelial cells. The effect of various conjugates were in PP–DHA > IPP–DHA > DIPP–DHA > CHP–DHA >> P–DHA order. PP–DHA and IPP–DHA conjugates were stable in human and mouse serum. Furthermore, the non-hydrolyzable amide-linked conjugate analogues affected breast cancer cells in a manner similar to that of the ester-linked conjugates. This suggests that ester-linked PP–DHA and IPP–DHA conjugates were stable during treatment to breast cancer cells due to structural hindrance. PP–DHA did not affect PPARα or PPARγ activities but its anticancer effects appear to be mediated in part though the inhibition of histone deacetylase (HDAC) activity. Further experiments are needed to confirm their molecular target and to test the effectiveness of these compounds in an in vivo model for their anticancer properties. In conclusion, these results suggest that the novel PP–DHA and IPP–DHA conjugates and their amide derivatives may be useful for the treatment of breast cancer.  相似文献   

11.
It is estimated that one in eight women will be affected with cancer during their lives, which means over 1 million women worldwide will be diagnosed with breast cancer in the year of 2011. Roughly, 70% of breast cancer will be estrogen receptor-alpha (ER-α) positive. The presence of ER-α is associated with better prognosis and is able to determine if tumors will respond to the estrogen-blocking/ER-antagonist drug Tamoxifen (TAM). However, a significant fraction of ER-positive tumors respond with minimal or no response to TAM. It is unclear why some breast cancer cells resist TAM and how to make these cells respond. Early evidence suggests Pomegranate fruit extracts (PFEs) exhibit an anticancer effect against some cancers. The objective of the study was to determine whether PFEs may able to enhance/sensitize the TAM’s effect in ER-positive MCF-7 breast cancer cells. To test the hypothesis, we determined the effect of PFEs on sensitive and TAM-resistant-MCF-7 cell viability and cell death in the presence or absence of TAM under estrogenic or non-estrogenic culture environment. The present studies demonstrated that PFEs enhance the TAM action in both sensitive and TAM-resistant MCF-7 cells through the inhibition of cell viability (regular or estrogen-induced) by inducing cell-death machinery. Collectively, the results showed for the first time that pomegranate combined with TAM may represent a novel and a powerful approach to enhance and sensitize TAM action.  相似文献   

12.
E-cadherin is a transmembrane protein that serves as a cell adhesion molecule component of the adherens junction. We previously showed that cadmium induced γ-secretase-dependent E-cadherin cleavage via oxidative stress. In this study, we report that staurosporine (STS)-induced apoptosis induces caspase-2 and/or -8-dependent E-cadherin cleavage. STS increased γ-secretase-dependent cleavage of E-cadherin in breast cancer cells through caspase activation. The ability of the γ-secretase inhibitor DAPT and the caspase inhibitor zVAD-FMK to block E-cadherin cleavage provided support for these results. The cleavage of E-cadherin was blocked by caspase-2 and -8 inhibitors. Immunofluorescence analysis confirmed that, along with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulated in the cytosol. In the presence of an inhibitor of γ-secretase or caspase, the cleavage of E-cadherin was partially blocked. Our findings suggest that activation of caspase-2/-8 stimulated the disruption of cadherin-mediated cell-cell contacts in apoptotic cells via γ-secretase activation.  相似文献   

13.
Lovastatin (LOV) and docosahexaenoic acid (DHA), besides improving cardiovascular functions, are also known for their anticancer activities. However, use of these compounds for treating or preventing cancer is limited because of their efficacies. The approach pursued involved chemical linkage of these two chemotypes. A lovastatin–docosahexaenoate (LOV–DHA) conjugate was prepared and tested against selected breast tumor cells lines with differential expression of estrogen receptors (ER) and Heregulin-2 (Her-2). The LOV–DHA conjugate exhibited superior cytotoxic effects against ER/Her-2 cell lines (MDA-MB-231 and MDA-MB-468), which were not observed with DHA or lovastatin alone, or in combination. Lovastatin supplementation arrested cells in the G0/G1 phase and enhanced expression levels of p21, whereas the conjugate did not demonstrate cell cycle arrest nor increased p21 expression. The LOV–DHA conjugate induced significant (P < 0.05) apoptosis as low as 1 μM, whereas DHA and lovastatin were ineffective at this concentration. The growth inhibitory effects of lovastatin were reversed by the addition of mevalonate, whereas mevalonate had no effect on the LOV–DHA conjugate-induced growth inhibition in MDA-MB-231 cells. Furthermore, the LOV–DHA conjugates were stable in mouse serum and intracellularly in MDA-MB-231 cells. These data suggest that the LOV–DHA conjugate mediated its effects through a HMG-CoA reductase-independent pathway and exerted significantly (P < 0.05) higher anticancer effects in breast cancer cells than lovastatin or DHA alone.  相似文献   

14.
15.
Breast cancer is one of the most common cancers worldwide and the discovery of new cytotoxic agents is needed. Enaminones are regarded to be a significant structural motif that is found in a variety of pharmacologically active compounds however the number of studies investigating the anticancer activities of N-propargylic β-enaminones (NPEs) is limited. Herein we investigated the potential cytotoxic and apoptotic effects of 23 different NPEs (1-23) on human breast cancer cells. Cytotoxicity was evaluated via MTT assay. Apoptotic cell death and cell cycle distributions were investigated by flow cytometry. CM-H2DCFDA dye was used to evaluate cellular ROS levels. Expression levels of Bcl-2, Bax, p21, and Cyclin D1 were measured by quantitative real-time PCR. ADME properties were calculated using the ADMET 2.0 tool. NPEs 4, 9, 16, and 21 showed selective cytotoxic activity against breast cancer cells with SI values >2. NPEs induced apoptosis and caused significant changes in Bcl-2 and Bax mRNA levels. The cell cycle was arrested at the G0/G1 phase and levels of p21 and Cyclin D1 were upregulated in both breast cancer cells. ROS levels were significantly increased by NPEs, suggesting that the cytotoxic and apoptotic effects of NPEs were mediated by ROS. ADME analysis revealed that NPEs showed favorable distributions in both breast cancer cell lines, meaning good lipophilicity values, low unfractionated values, and high bioavailability. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.  相似文献   

16.
Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells.  相似文献   

17.
Tumor necrosis factor alpha (TNF-) is a cytokine that acts as an important mediator of the apoptotic process that also demonstrates selective citotoxicity against malignant breast tumor cells. In the present study, the presence of apoptotic tumor cells and the synthesis of TNF- by inflammatory cells were investigated in tissue samples from grade III invasive breast cancer with long-term follow-up. In situ detection of tumor apoptotic cells was investigated by direct immuno-peroxidase of digoxigenin-labeled genomic DNA. The production of TNF- and tumor cell proliferation were investigated by immunohistochemical procedures. Our data demonstrated that patients with a clinical history of cancer recurrence and metastasis presented a lower number of cancerous apoptotic cells, higher tumor proliferation rates, and lower TNF- expression rates by inflammatory cells than what is observed among patients diagnosed with the same histopathological breast cancer type but in the absence of tumor recurrence and metastasis.  相似文献   

18.
Interleukin-1β (IL-1β), vascular endothelial growth factor (VEGF), and IL-4 serum levels and new genetic mutations in breast cancer (BC) patients were assessed in the current study. The serum levels of the examined cytokines in 40 BC patients and 40 control subjects were assessed using the ELISA technique. In order to identify genotype variants of the IL-1β, IL-4, and VEGF genes in 40 Formalin Fixed Paraffin Embedded (FFPE) samples with BC and 10 FFPE samples from healthy women's breast tissue, Sanger sequencing was used. According to this study, BC patients had significantly lower serum concentrations of IL-4 and significantly higher quantities of the tumor markers, CA15-3, IL-1β, and VEGF. In terms of genotype alterations, a total of 21 mutations in three trialed genes (eight in IL-1β, 10 in IL-4, and three in VEGF) were found in BC patients. The results of the current investigation suggested that angiogenesis and the development of BC may be significantly influenced by the genetic differences and higher levels of the examined cytokines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号