首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
有效地控制慢性移植排斥反应和诱导移植免疫耐受是当今移植免疫学研究的热点。基因工程由于在克服移植免疫排斥反应和诱导免疫耐受中具有独特优势而倍受人们关注。然而,在临床应用基因治疗克服移植器官排斥之前,必须确定有效、安全的载体及适宜的靶基因。对该领域的新进展进行了简要综述。  相似文献   

2.
Regulatory T cells preserve tolerance to peripheral self-Ags and may control the response to allogeneic tissues to promote transplantation tolerance. Although prior studies have demonstrated prolonged allograft survival in the presence of regulatory T cells (T-reg), data documenting the capacity of these cells to promote tolerance in immunocompetent transplant models are lacking, and the mechanism of suppression in vivo remains unclear. We used a TCR transgenic model of allograft rejection to characterize the in vivo activity of CD4(+)CD25(+) T-reg. We demonstrate that graft Ag-specific T-reg effectively intercede in the rejection response of naive T cells to established skin allografts. Furthermore, CFSE labeling demonstrates impaired proliferation of naive graft Ag-specific T cells in the draining lymph node in the presence of T-reg. These results confirm the efficacy of T-reg in promoting graft survival and suggest that their suppressive action is accomplished in part through inhibition of proliferation.  相似文献   

3.
Costimulatory blockade of CD28-B7 interaction with CTLA4Ig is a well-established strategy to induce transplantation tolerance. Although previous in vitro studies suggest that CTLA4Ig upregulates expression of the immunoregulatory enzyme IDO in dendritic cells, the relationship of CTLA4Ig and IDO in in vivo organ transplantation remains unclear. In this study, we studied whether concerted immunomodulation in vivo by CTLA4Ig depends on IDO. C57BL/6 recipients receiving a fully MHC-mismatched BALB/c heart graft treated with CTLA4Ig + donor-specific transfusion showed indefinite graft survival (>100 d) without signs of chronic rejection or donor specific Ab formation. Recipients with long-term surviving grafts had significantly higher systemic IDO activity as compared with rejectors, which markedly correlated with intragraft IDO and Foxp3 levels. IDO inhibition with 1-methyl-dl-tryptophan, either at transplant or at postoperative day 50, abrogated CTLA4Ig + DST-induced long-term graft survival. Importantly, IDO1 knockout recipients experienced acute rejection and graft survival comparable to controls. In addition, αCD25 mAb-mediated depletion of regulatory T cells (Tregs) resulted in decreased IDO activity and again prevented CTLA4Ig + DST induced indefinite graft survival. Our results suggest that CTLA4Ig-induced tolerance to murine cardiac allografts is critically dependent on synergistic cross-linked interplay of IDO and Tregs. These results have important implications for the clinical development of this costimulatory blocker.  相似文献   

4.
The success rate of renal transplantation has improved considerably during the past decade, with substantial improvements in both graft and patient survival. The quality of graft function, however, and not graft survival alone is increasingly determining the standards by which transplantation outcome is being judged. As the demand for kidney transplants continues to rise and transplants are being offered to an ever-increasing number of patients, organs are being sought from new supply pools and efforts are being made to use current resources more efficiently. Improvements in clinical management have allowed short-term complications such as infection and rejection to be better prevented or better diagnosed and treated. Fundamental advances in the understanding of the immunologic processes underlying both allograft rejection and acceptance and the introduction of new immunosuppressive agents have allowed a better use of drug therapy and have moved the goal of acquired transplant tolerance closer to attainment. With improved initial transplant success rates, the long-term transplantation outcome is becoming more important. The role of tissue matching in preventing chronic rejection is becoming more appreciated, and the long-term risks of malignancy, arteriosclerosis, and chronic rejection are being better recognized and managed.  相似文献   

5.
It is an urgent need to induce and keep the donor-specific immune tolerance without affecting the function of normal immune defense and immune surveillance in clinical organ transplantation. Large number of studies showed that both the establishment of donor-recipient chimerism and the application of antibodies or drugs could obtain the donor-specific immune tolerance in animal transplantation model. However, the former as treatment of clinical practice has a poor feasibility, the latter has a very low success rate in clinical organ transplantation. There is a group of naturally occurring CD4+CD25+ regulatory T cells (Tregs) that mediate immune tolerance by suppressing alloreactive T cells in vivo. These cells are unable to curb the occurrence of allograft rejection owing their low content. And donor-specific Tregs amplified in vitro alone can not induce donor-specific immune tolerance for recipient. Rapamycin (RPM) as a proliferation signal inhibitor, studies have shown it can effectively inhibit allograft rejection and maybe contribute to induction of immune tolerance. But there exist still many dose-dependent adverse reactions which could prevent the establishment of immune tolerance and reduce the life quality of recipients in the clinical application of RPM. Therefore, we speculate a small amount of RPM combined with donor-specific Tregs amplified in vitro may be not only induce the achievement of donor-specific tolerance, but also reduce or eliminate the side effects of RPM in clinical organ transplantation.  相似文献   

6.
Exploring new immunosuppressive strategies inducing donor-specific hyporesponsiveness is an important challenge in transplantation. For this purpose, a careful immune monitoring and graft histology assessment is mandatory. Here, we report the results of a pilot study conducted in twenty renal transplant recipients, analyzing the immunomodulatory effects of a protocol based on induction therapy with rabbit anti-thymocyte globulin low doses, sirolimus, and mofetil mycophenolate. Evolution of donor-specific cellular and humoral alloimmune response, peripheral blood lymphocyte subsets and apoptosis was evaluated. Six-month protocol biopsies were performed to assess histological lesions and presence of FOXP3+ regulatory T cells (Tregs) in interstitial infiltrates. After transplantation, there was an early and transient apoptotic effect, mainly within the CD8+ HLADR+ T cells, combined with a sustained enhancement of CD4+ CD25(+high) lymphocytes in peripheral blood. The incidence of acute rejection was 35%, all steroid sensitive. Importantly, only pretransplant donor-specific cellular alloreactivity could discriminate patients at risk to develop acute rejection. Two thirds of the patients became donor-specific hyporesponders at 6 and 24 mo, and the achievement of this immunologic state was not abrogated by prior acute rejection episodes. Remarkably, donor-specific hyporesponders had the better renal function and less chronic renal damage. Donor-specific hyporesponsiveness was inhibited by depleting CD4+ CD25(+high) T cells, which showed donor-Ag specificity. FOXP3+ CD4+ CD25(+high) Tregs both in peripheral blood and in renal infiltrates were higher in donor-specific hyporesponders than in nonhyporesponders, suggesting that the recruitment of Tregs in the allograft plays an important role for renal acceptance. In conclusion, reaching donor-specific hyporesponsiveness is feasible after renal transplantation and associated with Treg recruitment in the graft.  相似文献   

7.
The incidence of acute kidney injury (AKI) is on the rise and is associated with high mortality; however, there are currently few effective treatments. Moreover, the relationship between Tregs and other components of the immune microenvironment (IME) in the pathogenesis of AKI remains unclear. We downloaded four publicly accessible AKI datasets, GSE61739, GSE67401, GSE19130, GSE81741, GSE19288 and GSE106993 from the gene expression omnibus (GEO) database. Additionally, we gathered two kidney single-cell sequencing (scRNA-seq) samples from the Department of Organ Transplantation at Zhujiang Hospital of Southern Medical University to investigate chronic kidney transplant rejection (CKTR). Moreover, we also collected three samples of normal kidney tissue from GSE131685. By analysing the differences in immune cells between the AKI and Non-AKI groups, we discovered that the Non-AKI group contained a significantly greater number of Tregs than the AKI group. Additionally, the activation of signalling pathways, such as inflammatory molecules secretion, immune response, glycolytic metabolism, NOTCH, FGF, NF-κB and TLR4, was significantly greater in the AKI group than in the Non-AKI group. Additionally, analysis of single-cell sequencing data revealed that Tregs in patients with chronic kidney rejection and in normal kidney tissue have distinct biology, including immune activation, cytokine production, and activation fractions of signalling pathways such as NOTCH and TLR4. In this study, we found significant differences in the IME between AKI and Non-AKI, including differences in Tregs cells and activation levels of biologically significant signalling pathways. Tregs were associated with lower activity of signalling pathways such as inflammatory response, inflammatory molecule secretion, immune activation, glycolysis.  相似文献   

8.
Organ transplantation (Tx) results in a transfer of donor leukocytes from the graft to the recipient, which can lead to chimerism and may promote tolerance. It remains unclear whether this tolerance involves donor-derived regulatory T cells (Tregs). In this study, we examined the presence and allosuppressive activity of CD4+CD25+Foxp3+ Tregs in perfusates of human liver grafts and monitored the cells presence in the circulation of recipients after liver Tx. Vascular perfusions of 22 liver grafts were performed with University of Wisconsin preservation and albumin solutions. Flow cytometric analysis revealed that perfusate T cells had high LFA-1 integrin expression and had a reversed CD4 to CD8 ratio compared with control blood of healthy individuals. These findings indicate that perfusate cells are of liver origin and not derived from residual donor blood. Further characterization of perfusate mononuclear cells showed an increased proportion of CD4+CD25+CTLA4+ T cells compared with healthy control blood. Increased percentages of Foxp3+ cells, which were negative for CD127, confirmed the enrichment of Tregs in perfusates. In MLR, CD4+CD25+ T cells from perfusates suppressed proliferation and IFN-gamma production of donor and recipient T cells. In vivo within the first weeks after Tx, up to 5% of CD4+CD25+CTLA4+ T cells in recipient blood were derived from the donor liver. In conclusion, a substantial number of donor Tregs detach from the liver graft during perfusion and continue to migrate into the recipient after Tx. These donor Tregs suppress the direct pathway alloresponses and may in vivo contribute to chimerism-associated tolerance early after liver Tx.  相似文献   

9.
The half-life of transplanted kidneys is <10 years. Acute or chronic rejections have a negative impact on transplant outcome. Therefore, achieving to allograft tolerance for improving long-term transplant outcome is a desirable goal of transplantation field. In contrast, there are evidence that distinct immunological characteristics lead to tolerance in some transplant recipients. In contrast, the main reason for allograft loss is immunological responses. Various immune cells including T cells, B cells, dendritic cells, macrophages, natural killer, and myeloid-derived suppressor cells damage graft tissue and, thereby, graft loss happens. Therefore, being armed with the comprehensive knowledge about either preimmunological or postimmunological characteristics of renal transplant patients may help us to achieve an operational tolerance. In the present study, we are going to review and discuss immunological characteristics of renal transplant recipients with rejection and compare them with tolerant subjects.  相似文献   

10.
Regulatory T cells (Tregs) induced by oral tolerance may suppress immunity by production of TGF-beta that could also enhance Treg activity. However, all cells that are phenotypically Tregs in rats (CD4(+)CD45RC(high)-RC(high)) may not have regulatory function. Because Smad7 expression in T cells is associated with inflammation and autoimmunity, then lack of Smad7 may identify those cells that function as Tregs. We reported that feeding type V collagen (col(V)) to WKY rats (RT1(l)) induces oral tolerance to lung allografts (F344-RT1(lvl)) by T cells that produce TGF-beta. The purpose of the current study was to identify the Tregs that mediate col(V)-induced tolerance, and determine Smad7 expression in these cells. RC(high) cells from tolerant rats were unresponsive to allogeneic stimulation and abrogated rejection after adoptive transfer. In contrast, CD4(+)CD45RC(low) (RC(low)) cells from tolerant rats and RC(high) or RC(low) cells from normal rats or untreated allograft recipients proliferated vigorously in response to donor Ags, and did not suppress rejection after adoptive transfer. TGF-beta enhanced proliferation in response to col(V) presented to tolerant RC(high), but not other cells. In contrast to other cells, only RC(high) cells from tolerant rats did not express Smad7. Collectively, these data show that the Tregs that mediate col(V)-induced tolerance to lung allografts do not express SMAD7 and, therefore, are permissive to TGF-beta-mediated signaling.  相似文献   

11.

Background

Heat shock proteins (Hsps) are stress induced proteins with immunomodulatory properties. The Hsp70 of Mycobacterium tuberculosis (TBHsp70) has been shown to have an anti-inflammatory role on rodent autoimmune arthritis models, and the protective effects were demonstrated to be dependent on interleukin-10 (IL-10). We have previously observed that TBHsp70 inhibited maturation of dendritic cells (DCs) and induced IL-10 production by these cells, as well as in synovial fluid cells.

Methodology/Principal Findings

We investigated if TBHsp70 could inhibit allograft rejection in two murine allograft systems, a transplanted allogeneic melanoma and a regular skin allograft. In both systems, treatment with TBHsp70 significantly inhibited rejection of the graft, and correlated with regulatory T cells (Tregs) recruitment. This effect was not tumor mediated because injection of TBHsp70 in tumor-free mice induced an increase of Tregs in the draining lymph nodes as well as inhibition of proliferation of lymph node T cells and an increase in IL-10 production. Finally, TBHsp70 inhibited skin allograft acute rejection, and depletion of Tregs using a monoclonal antibody completely abolished this effect.

Conclusions/Significance

We present the first evidence for an immunosuppressive role for this protein in a graft rejection system, using an innovative approach – immersion of the graft tissue in TBHsp70 solution instead of protein injection. Also, this is the first study that demonstrates dependence on Treg cells for the immunosuppressive role of TBHsp70. This finding is relevant for the elucidation of the immunomodulatory mechanism of TBHsp70. We propose that this protein can be used not only for chronic inflammatory diseases, but is also useful for organ transplantation management.  相似文献   

12.
Characterized by immunosuppression regulatory T cells (Tregs) play a key role in maintaining immune tolerance. A growing number of tumours have been found with Tregs accumulating in microenvironment and patients with high density of Tregs in tumour stroma get a worse prognosis, which suggests that Tregs may inhibit anti-tumour immunity in stroma, resulting in a poor prognosis. In this paper, we demonstrate the accumulation of Tregs in tumour stroma and the possible suppressive mechanisms. We also state the immunotherapy that has being used in animal and clinical trials.  相似文献   

13.
Proton magnetic resonance spectroscopy of plasma indicates an alteration of proteolipid methyl and methylene resonances after heart transplantation. The intensity of these alterations is modulated by the transplant tolerance phenomena and allows the accurate detection of heart graft rejection. These results reinforce the analogy between the immunology of graft tolerance and the immunology of cancer or pregnancy where identical alterations have been identified.  相似文献   

14.
T cell-mediated autoimmunity to collagen V (col-V), a sequestered yet immunogenic self-protein, can induce chronic lung allograft rejection in rodent models. In this study we characterized the role of CD4+ CD25+ regulatory T cells (Tregs) in regulating col-V autoimmunity in human lung transplant (LT) recipients. LT recipients revealed a high frequency of col-V-reactive, IL-10-producing CD4+ T cells (T IL-10 cells) with low IL-2-, IFN-gamma-, IL-5-, and no IL-4-producing T cells. These T(IL-10) cells were distinct from Tregs because they lacked constitutive expression of both CD25 and Foxp3. Expansion of T IL-10 cells during col-V stimulation in vitro involved CTLA-4 on Tregs, because both depleting and blocking Tregs with anti-CTLA4 F(ab')2 mAbs resulted in loss of T IL-10 cells with a concomitant increase in IFN-gamma producing Th1 cells (TIFN-gamma cells). A Transwell culture of col-V-specific T IL-10 cells with Th1 cells (those generated in absence of Tregs) from the same patient resulted in marked inhibition of IFN-gamma and proliferation of T(IFN-gamma) cells, which was reversed by neutralizing IL-10. Furthermore, the T IL-10 cells were HLA class II restricted because blocking HLA class II on APCs resulted in the loss of IL-10 production. Chronic lung allograft rejection was associated with the loss of Tregs with a concomitant decrease in T IL-10 cells and an increase in T IFN-gamma cells. We conclude that LT patients have col-V-specific T cells that can be detected in the peripheral blood. The predominant col-V-specific T cells produce IL-10 that suppresses autoreactive Th1 cells independently of direct cellular contact. Tregs are pivotal for the induction of these "suppressor" T IL-10 cells.  相似文献   

15.
人和动物肠道内存在大量的细菌,并且肠道细菌在宿主多功能代谢和免疫系统平衡中至关重要,它们与宿主免疫和代谢系统共同进化。在正常情况下,肠道菌群与宿主处于长期平衡状态,然而,当肠道菌群紊乱时,这种平衡将会被打破,并导致免疫应答的改变和各种疾病的发生。Treg细胞是一种表达转录因子Foxp3的调节型T细胞,是促炎和抑炎反应及免疫平衡中重要的组成成分。近年来,大量的研究揭示了Treg细胞、宿主和肠道菌群之间错综复杂的关系,但并没有对动物体内各个部位Treg细胞的表达变化规律做出系统总结。本综述通过总结近年来人们对肠道菌群的研究,综合阐述肠道菌群紊乱时,Treg细胞在肠、外周血、脾脏和肾中的表达变化规律。  相似文献   

16.
Acute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8+ T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8+ T cell–mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice). The lung pathology is similar to findings in humans with acute lung transplant. In the presence of an intact immune response the inflammation resolves by day 30. Using CC10-OVA.RAG-/- mice, we found that CD4+ T cells and ICOS+/+ T cells were required for protection against lethal lung injury, while neutrophil depletion was not protective. In addition, CD4+Foxp3 + ICOS+ T cells were enriched in the lungs of animals surviving lung injury and ICOS+/+ Tregs promoted survival in animals that received ICOS-/- T cells. Direct comparison of ICOS-/- Tregs to ICOS+/+ Tregs found defects in vitro but no differences in the ability of ICOS-/- Tregs to protect from lethal lung injury. These data suggest that ICOS affects Treg development but is not necessarily required for Treg effector function.  相似文献   

17.
A major challenge in transplantation medicine is controlling the very strong immune responses to foreign antigens that are responsible for graft rejection. Although immunosuppressive drugs efficiently inhibit acute graft rejection, a substantial proportion of patients suffer chronic rejection that ultimately leads to functional loss of the graft. Induction of immunological tolerance to transplants would avoid rejection and the need for lifelong treatment with immunosuppressive drugs. Tolerance to self-antigens is ensured naturally by several mechanisms; one major mechanism depends on the activity of regulatory T lymphocytes. Here we show that in mice treated with clinically acceptable levels of irradiation, regulatory CD4+CD25+Foxp3+ T cells stimulated in vitro with alloantigens induced long-term tolerance to bone marrow and subsequent skin and cardiac allografts. Regulatory T cells specific for directly presented donor antigens prevented only acute rejection, despite hematopoietic chimerism. By contrast, regulatory T cells specific for both directly and indirectly presented alloantigens prevented both acute and chronic rejection. Our findings demonstrate the potential of appropriately stimulated regulatory T cells for future cell-based therapeutic approaches to induce lifelong immunological tolerance to allogeneic transplants.  相似文献   

18.
Allograft rejection is initiated by an immune response to donor MHC proteins. We recently reported that this response can result in breakdown of immune tolerance to a recipient self Ag. However, the contribution of this autoimmune response to graft rejection has yet to be determined. Here, we found that after mouse allogeneic heart transplantation, de novo CD4+ T cell and B cell autoimmune response to cardiac myosin (CM), a major contractile protein of cardiac muscle, is elicited in recipients. Importantly, CM is the autoantigen that causes autoimmune myocarditis, a heart autoimmune disease whose histopathological features resemble those observed in rejected cardiac transplants. Furthermore, T cell responses directed to CM peptide myhcalpha 334-352, a known myocarditogenic determinant, were detected in heart-transplanted mice. No responses to CM were observed in mice that had received an allogeneic skin graft or a syngeneic heart transplant, demonstrating that this response is tissue specific and that allogeneic response is necessary to break tolerance to CM. Next, we showed that sensitization of recipient mice with CM markedly accelerates the rejection of allogeneic heart. Therefore, posttransplant autoimmune response to CM is relevant to the rejection process. We conclude that transplantation-induced autoimmune response to CM represents a new mechanism that may play a significant role in cardiac transplant rejection.  相似文献   

19.

Introduction

Several studies have demonstrated that renal transplantation in HIV positive patients is both safe and effective. However, none of these studies have specifically examined outcomes in patients with HIV-associated nephropathy (HIVAN).

Methods

Medical records of all HIV-infected patients who underwent kidney transplantation at Johns Hopkins Hospital between September 2006 and January 2014 were reviewed. Data was collected to examine baseline characteristics and outcomes of transplant recipients with HIVAN defined pathologically as collapsing focal segmental glomerulosclerosis (FSGS) with tubulo-interstitial disease.

Results and Discussion

During the study period, a total of 16 patients with HIV infection underwent renal transplantation. Of those, 11 patients were identified to have biopsy-proven HIVAN as the primary cause of their end stage renal disease (ESRD) and were included in this study. They were predominantly African American males with a mean age of 47.6 years. Seven (64%) patients developed delayed graft function (DGF), and 6 (54%) patients required post-operative dialysis within one week of transplant. Graft survival rates at 1 and 3 years were 100% and 81%, respectively. Acute rejection rates at 1 and 3 years were 18% and 27%, respectively. During a mean follow up of 3.4 years, one patient died.

Conclusions

Acute rejection rates in HIVAN patients in this study are higher than reported in the general ESRD population, which is similar to findings from prior studies of patients with HIV infection and ESRD of various causes. The high rejection rates appear to have no impact on short or intermediate term graft survival.  相似文献   

20.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号