首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(1):125-128
The Gram-negative intracellular pathogen Francisella tularensis is known for its ability to dampen host immune responses. We recently performed a microarray analsyis comparing human monocyte responses to the highly virulent F. tularensis tularensis Schu S4 strain (F.t.) versus the less virulent F. tularensis novicida (F.n.).1 Many groups of genes were affected, including those involved with autophagy and with the regulation of autophagy. Here, we discuss the implications in the context of Francisella virulence and host cell response, then conclude with potential future experiments.  相似文献   

2.
Francisella tularensis is a highly virulent Gram‐negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface. These OMV and tubes (OMV/T) are produced in a regulated manner and contain known virulence factors. Mechanisms by which bacterial vesicles are produced and regulated are not well understood. We performed a genetic screen in F. novicida to decipher the molecular basis for regulated OMV/T formation, and identified both hypo‐ and hyper‐vesiculating mutants. Mutations in fumA and tktA, involved in central carbon metabolism, and in FTN_0908 and FTN_1037, of unknown function, resulted in severe defects in OMV/T production. Cysteine deprivation was identified as the signal that triggers OMV/T formation in F. novicida during growth in rich medium. We also found that fully virulent F. tularensis produces OMV/T in a similarly regulated manner. Further analysis revealed that OMV/T production is responsive to deprivation of essential amino acids in addition to cysteine, and that the hypo‐vesiculating mutants are defective in responding to this signal. Thus, amino acid starvation, such as encountered by Francisella during host cell invasion, regulates the production of membrane‐derived structures.  相似文献   

3.
Respiratory infection of mice with Francisella novicida has recently been used as a model for the highly virulent human pathogen Francisella tularensis. Similar to F. tularensis, even small doses of F. novicida administered by respiratory routes are lethal for inbred laboratory mice. This feature obviously limits study of infection-induced immunity. Parenteral sublethal infections of mice with F. novicida are feasible, but the resulting immune responses are incompletely characterized. Here we use parenteral intradermal (i.d.) and intraperitoneal (i.p.) F. novicida infections of C57BL/6J mice to determine the role of B cells in controlling primary and secondary F. novicida infections. Despite developing comparable levels of F. novicida-primed T cells, B cell knockout mice were much more susceptible to both primary i.d. infection and secondary i.p. challenge than wild type (normal) C57BL/6J mice. Transfer of F. novicida-immune sera to either wild type C57BL/6J mice or to B cell knockout mice did not appreciably impact survival of subsequent lethal F. novicida challenge. However, F. novicida-immune mice that were depleted of T cells after priming but just before challenge survived and cleared secondary i.p. F. novicida challenge. Collectively these results indicate that B cells, if not serum antibodies, play a major role in controlling F. novicida infections in mice.  相似文献   

4.
Modification of specific Gram‐negative bacterial cell envelope components, such as capsule, O‐antigen and lipid A, are often essential for the successful establishment of infection. Francisella species express lipid A molecules with unique characteristics involved in circumventing host defences, which significantly contribute to their virulence. In this study, we show that NaxD, a member of the highly conserved YdjC superfamily, is a deacetylase required for an important modification of the outer membrane component lipid A in Francisella. Mass spectrometry analysis revealed that NaxD is essential for the modification of a lipid A phosphate with galactosamine in Francisella novicida, a model organism for the study of highly virulent Francisella tularensis. Significantly, enzymatic assays confirmed that this protein is necessary for deacetylation of its substrate. In addition, NaxD was involved in resistance to the antimicrobial peptide polymyxin B and critical for replication in macrophages and in vivo virulence. Importantly, this protein is also required for lipid A modification in F. tularensis as well as Bordetella bronchiseptica. Since NaxD homologues are conserved among many Gram‐negative pathogens, this work has broad implications for our understanding of host subversion mechanisms of other virulent bacteria.  相似文献   

5.

Background

Francisella tularensis is a gram negative, facultative intracellular bacterium that is the etiological agent of tularemia. F. novicida is closely related to F. tularensis but has low virulence for humans while being highly virulent in mice. IglA is a 21 kDa protein encoded by a gene that is part of an iglABCD operon located on the Francisella pathogenicity island (FPI).

Results

Bioinformatics analysis of the FPI suggests that IglA and IglB are components of a newly described type VI secretion system. In this study, we showed that IglA regulation is controlled by the global regulators MglA and MglB. During intracellular growth IglA production reaches a maximum at about 10 hours post infection. Biochemical fractionation showed that IglA is a soluble cytoplasmic protein and immunoprecipitation experiments demonstrate that it interacts with the downstream-encoded IglB. When the iglB gene was disrupted IglA could not be detected in cell extracts of F. novicida, although IglC could be detected. We further demonstrated that IglA is needed for intracellular growth of F. novicida. A non-polar iglA deletion mutant was defective for growth in mouse macrophage-like cells, and in cis complementation largely restored the wild type macrophage growth phenotype.

Conclusion

The results of this study demonstrate that IglA and IglB are interacting cytoplasmic proteins that are required for intramacrophage growth. The significance of the interaction may be to secrete effector molecules that affect host cell processes.  相似文献   

6.
Francisella spp. are highly infectious and virulent bacteria that cause the zoonotic disease tularemia. Knowledge is lacking for the virulence factors expressed by Francisella and how these factors are secreted and delivered to host cells. Gram-negative bacteria constitutively release outer membrane vesicles (OMV), which may function in the delivery of virulence factors to host cells. We identified growth conditions under which Francisella novicida produces abundant OMV. Purification of the vesicles revealed the presence of tube-shaped vesicles in addition to typical spherical OMV, and examination of whole bacteria revealed the presence of tubes extending out from the bacterial surface. Recently, both prokaryotic and eukaryotic cells have been shown to produce membrane-enclosed projections, termed nanotubes, which appear to function in cell-cell communication and the exchange of molecules. In contrast to these previously characterized structures, the F. novicida tubes are produced in liquid as well as on solid medium and are derived from the OM rather than the cytoplasmic membrane. The production of the OMV and tubes (OMV/T) by F. novicida was coordinately regulated and responsive to both growth medium and growth phase. Proteomic analysis of purified OMV/T identified known Francisella virulence factors among the constituent proteins, suggesting roles for the vesicles in pathogenesis. In support of this, production of OM tubes by F. novicida was stimulated during infection of macrophages and addition of purified OMV/T to macrophages elicited increased release of proinflammatory cytokines. Finally, vaccination with purified OMV/T protected mice from subsequent challenge with highly lethal doses of F. novicida.  相似文献   

7.
We determined whether Francisella spp. are present in water, sediment, and soil from an active tularemia natural focus on Martha’s Vineyard, Massachusetts, during a multiyear outbreak of pneumonic tularemia. Environmental samples were tested by polymerase chain reaction (PCR) targeting Francisella species 16S rRNA gene and succinate dehydrogenase A (sdhA) sequences; evidence of the agent of tularemia was sought by amplification of Francisella tularensis-specific sequences for the insertion element ISFTu2, 17-kDa protein gene tul4, and the 43-kDa outer membrane protein gene fopA. Evidence of F. tularensis subsp. tularensis, the causative agent of the human infections in this outbreak, was not detected from environmental samples despite its active transmission among ticks and animals in the sampling site. Francisella philomiragia was frequently detected from a brackish-water pond using Francisella species PCR targets, and subsequently F. philomiragia was isolated from an individual brackish-water sample. Distinct Francisella sp. sequences that are closely related to F. tularensis and Francisella novicida were detected from samples collected from the brackish-water pond. We conclude that diverse Francisella spp. are present in the environment where human cases of pneumonic tularemia occur.  相似文献   

8.
Infection with the bacterial pathogen Francisella tularensis tularensis (F. tularensis) causes tularemia, a serious and debilitating disease. Francisella tularensis novicida strain U112 (abbreviated F. novicida), which is closely related to F. tularensis, is pathogenic for mice but not for man, making it an ideal model system for tularemia. Intracellular pathogens like Francisella inhibit the innate immune response, thereby avoiding immune recognition and death of the infected cell. Because activation of inflammatory pathways may lead to cell death, we reasoned that we could identify bacterial genes involved in inhibiting inflammation by isolating mutants that killed infected cells faster than the wild-type parent. We screened a comprehensive transposon library of F. novicida for mutant strains that increased the rate of cell death following infection in J774 macrophage-like cells, as compared to wild-type F. novicida. Mutations in 28 genes were identified as being hypercytotoxic to both J774 and primary macrophages of which 12 were less virulent in a mouse infection model. Surprisingly, we found that F. novicida with mutations in four genes (lpcC, manB, manC and kdtA) were taken up by and killed macrophages at a much higher rate than the parent strain, even upon treatment with cytochalasin D (cytD), a classic inhibitor of macrophage phagocytosis. At least 10-fold more mutant bacteria were internalized by macrophages as compared to the parent strain if the bacteria were first fixed with formaldehyde, suggesting a surface structure is required for the high phagocytosis rate. However, bacteria were required to be viable for macrophage toxicity. The four mutant strains do not make a complete LPS but instead have an exposed lipid A. Interestingly, other mutations that result in an exposed LPS core were not taken up at increased frequency nor did they kill host cells more than the parent. These results suggest an alternative, more efficient macrophage uptake mechanism for Francisella that requires exposure of a specific bacterial surface structure(s) but results in increased cell death following internalization of live bacteria.  相似文献   

9.
We have previously shown that when cultured in vitro, peritoneal rat macrophages infected with Francisella novicida spontaneously release nitric oxide in sufficient quantities to inhibit bacterial growth. However, it is not known whether F. novicida can have a similar antimicrobial effect in vivo. Here we show that a co-infection of F. novicida with Francisella tularensis can suppress the number of F. tularensis cells in rat spleens by as much as 100-fold.  相似文献   

10.
Francisella tularensis is associated with water and waterways and infects many species of animals, insects, and protists. The mechanism Francisella utilizes to persist in the environment and in tick vectors is currently unknown. We have demonstrated for the first time that Francisella novicida, a model organism of F. tularensis, forms a biofilm in vitro. Selected F. novicida transposon mutants were tested for their ability to form biofilm compared to the wildtype F. novicida strain. Mutation of the putative qseB gene led to an impairment in the ability to form biofilm with no impairment in bacterial growth. A qseC mutant had impaired growth but demonstrated a marked impairment in biofilm production. Mutation in capC affected both bacterial growth and biofilm formation, but no biofilm production impairment was seen with capB or pilE mutants. A deletion mutant in the orphan response regulator FTN_1465, which we propose is the putative QseB, formed significantly less biofilm than the wildtype. When FTN_1465 was complemented back into the deletion mutant, biofilm formation was restored. Thus, the orphan response regulator FTN_1465 is an important factor in biofilm production in vitro in F. novicida. These results demonstrate that Francisella species are able to form biofilms in vitro, suggesting that biofilm formation may be important for the lifecycle of this organism.  相似文献   

11.
Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.  相似文献   

12.
Lipid A coats the outer surface of the outer membrane of Gram‐negative bacteria. In Francisella tularensis subspecies novicida lipid A is present either as the covalently attached anchor of lipopolysaccharide (LPS) or as free lipid A. The lipid A moiety of Francisella LPS is linked to the core domain by a single 2‐keto‐3‐deoxy‐D‐manno‐octulosonic acid (Kdo) residue. F. novicida KdtA is bi‐functional, but F. novicida contains a membrane‐bound Kdo hydrolase that removes the outer Kdo unit. The hydrolase consists of two proteins (KdoH1 and KdoH2), which are expressed from adjacent, co‐transcribed genes. KdoH1 (related to sialidases) has a single predicted N‐terminal transmembrane segment. KdoH2 contains 7 putative transmembrane sequences. Neither protein alone catalyses Kdo cleavage when expressed in E. coli. Activity requires simultaneous expression of both proteins or mixing of membranes from strains expressing the individual proteins under in vitro assay conditions in the presence of non‐ionic detergent. In E. coli expressing KdoH1 and KdoH2, hydrolase activity is localized in the inner membrane. WBB06, a heptose‐deficient E. coli mutant that makes Kdo2‐lipid A as its sole LPS, accumulates Kdo‐lipid A when expressing the both hydrolase components, and 1‐dephospho‐Kdo‐lipid A when expressing both the hydrolase and the Francisella lipid A 1‐phosphatase (LpxE).  相似文献   

13.
Sepsis is a complex immune disorder with a mortality rate of 20–50% and currently has no therapeutic interventions. It is thus critical to identify and characterize molecules/factors responsible for its development. We have recently shown that pulmonary infection with Francisella results in sepsis development. As extensive cell death is a prominent feature of sepsis, we hypothesized that host endogenous molecules called alarmins released from dead or dying host cells cause a hyperinflammatory response culminating in sepsis development. In the current study we investigated the role of galectin-3, a mammalian β-galactoside binding lectin, as an alarmin in sepsis development during F. novicida infection. We observed an upregulated expression and extracellular release of galectin-3 in the lungs of mice undergoing lethal pulmonary infection with virulent strain of F. novicida but not in those infected with a non-lethal, attenuated strain of the bacteria. In comparison with their wild-type C57Bl/6 counterparts, F. novicida infected galectin-3 deficient (galectin-3−/−) mice demonstrated significantly reduced leukocyte infiltration, particularly neutrophils in their lungs. They also exhibited a marked decrease in inflammatory cytokines, vascular injury markers, and neutrophil-associated inflammatory mediators. Concomitantly, in-vitro pre-treatment of primary neutrophils and macrophages with recombinant galectin-3 augmented F. novicida-induced activation of these cells. Correlating with the reduced inflammatory response, F. novicida infected galectin-3−/− mice exhibited improved lung architecture with reduced cell death and improved survival over wild-type mice, despite similar bacterial burden. Collectively, these findings suggest that galectin-3 functions as an alarmin by augmenting the inflammatory response in sepsis development during pulmonary F. novicida infection.  相似文献   

14.
Virulent Francisella tularensis ssp tularensis is an intracellular, Gram negative bacterium that causes acute lethal disease following inhalation of fewer than 15 organisms. Pathogenicity of Francisella infections is tied to its unique ability to evade and suppress inflammatory responses in host cells. It has been proposed that induction of alternative activation of infected macrophages is a mechanism by which attenuated Francisella species modulate host responses. In this report we reveal that neither attenuated F. tularensis Live Vaccine Strain (LVS) nor virulent F. tularensis strain SchuS4 induce alternative activation of macrophages in vitro or in vivo. LVS, but not SchuS4, provoked production of arginase1 independent of alternative activation in vitro and in vivo. However, absence of arginase1 did not significantly impact intracellular replication of LVS or SchuS4. Together our data establish that neither induction of alternative activation nor expression of arginase1 are critical features of disease mediated by attenuated or virulent Francisella species.  相似文献   

15.
The intracellular Gram-negative bacterium Francisella tularensis causes the disease tularemia and is known for its ability to subvert host immune responses. Previous work from our laboratory identified the PI3K/Akt pathway and SHIP as critical modulators of host resistance to Francisella. Here, we show that SHIP expression is strongly down-regulated in monocytes and macrophages following infection with F. tularensis novicida (F.n.). To account for this negative regulation we explored the possibility that microRNAs (miRs) that target SHIP may be induced during infection. There is one miR that is predicted to target SHIP, miR-155. We tested for induction and found that F.n. induced miR-155 both in primary monocytes/macrophages and in vivo. Using luciferase reporter assays we confirmed that miR-155 led to down-regulation of SHIP, showing that it specifically targets the SHIP 3′UTR. Further experiments showed that miR-155 and BIC, the gene that encodes miR-155, were induced as early as four hours post-infection in primary human monocytes. This expression was dependent on TLR2/MyD88 and did not require inflammasome activation. Importantly, miR-155 positively regulated pro-inflammatory cytokine release in human monocytes infected with Francisella. In sharp contrast, we found that the highly virulent type A SCHU S4 strain of Francisella tularensis (F.t.) led to a significantly lower miR-155 response than the less virulent F.n. Hence, F.n. induces miR-155 expression and leads to down-regulation of SHIP, resulting in enhanced pro-inflammatory responses. However, impaired miR-155 induction by SCHU S4 may help explain the lack of both SHIP down-regulation and pro-inflammatory response and may account for the virulence of Type A Francisella.  相似文献   

16.
The mechanism of iron transport in Francisella is still a puzzle since none of the sequenced Francisella strains appears to encode a TonB protein, the energy transducer of the proton motive force necessary to act on the bacterial outer membrane siderophore receptor to allow the internalization of iron. In this work we demonstrate using kinetic experiments of radioactive Fe3+ utilization, that iron uptake in Francisella novicida, although with no recognizable TonB protein, is indeed dependent on energy generated by the proton motive force. Moreover, mutants of a predicted outer membrane receptor still transport iron and are sensitive to the iron dependent antimicrobial compound streptonigrin. Our studies suggest that alternative pathways to internalize iron might exist in Francisella.  相似文献   

17.
Aims: To analyse the V1 region of the 16S rDNA gene by a universal pyrosequencing protocol to identify and subtype Francisella in 31 strains from a repository collection and 96 patient isolates. Methods and Results: Pyrosequencing was used to determine the nucleotide sequence of PCR amplification products of the variable region (V1) of the 16S rDNA from 31 repository strains and 96 isolates from Swedish patients with ulceroglandular tularaemia. Pyrosequencing resulted in a 37 nucleotide sequence, specific for Francisella sp., for all repository strains and patient samples analysed. In addition, the isolates could be divided into two groups based on the analysis of a single nucleotide polymorphism in the sequence: one group included Francisella tularensis ssp. tularensis, ssp. holarctica and ssp. mediasiatica, whereas the other group included Francisella tularensis ssp. novicida and other species of Francisella. The analysis of samples taken from patients suffering from ulceroglandular tularaemia revealed that all isolates belonged to the first group comprising subspecies of F. tularensis virulent for humans. Conclusions: The pyrosequencing analysis of the 16S rDNA V1 is a useful molecular tool for the rapid identification of suspected isolates of Francisella sp. in clinical or environmental samples. Significance and Impact of the Study: Virulent F. tularensis ssp. causing ulceroglandular tularaemia, or those with a potential to be used in a bioterrorism event, could rapidly be discriminated from subspecies less virulent for humans.  相似文献   

18.
Francisella tularensis is a potent mammalian pathogen well adapted to intracellular habitats, whereas F. novicida and F. philomiragia are less virulent in mammals and appear to have less specialized lifecycles. We explored adaptations within the genus that may be linked to increased host association, as follows. First, we determined the genome sequence of F. tularensis subsp. mediasiatica, the only subspecies that had not been previously sequenced. This genome, and those of 12 other F. tularensis isolates, were then compared to the genomes of F. novicida (three isolates) and F. philomiragia (one isolate). Signs of homologous recombination were found in ∼19.2% of F. novicida and F. philomiragia genes, but none among F. tularensis genomes. In addition, random insertions of insertion sequence elements appear to have provided raw materials for secondary adaptive mutations in F. tularensis, e.g. for duplication of the Francisella Pathogenicity Island and multiplication of a putative glycosyl transferase gene. Further, the five major genetic branches of F. tularensis seem to have converged along independent routes towards a common gene set via independent losses of gene functions. Our observations suggest that despite an average nucleotide identity of >97%, F. tularensis and F. novicida have evolved as two distinct population lineages, the former characterized by clonal structure with weak purifying selection, the latter by more frequent recombination and strong purifying selection. F. tularensis and F. novicida could be considered the same bacterial species, given their high similarity, but based on the evolutionary analyses described in this work we propose retaining separate species names.  相似文献   

19.
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.  相似文献   

20.
Previous results suggest that mutations in most genes in the Francisella pathogenicity island (FPI) attenuate the bacterium. Using a mouse model, here we determined the impact of mutations in pdpA, pdpC, and pdpD in Francisella novicida on in vitro replication in macrophages, and in vivo immunogenicity. In contrast to most FPI genes, deletion of pdpC (FnΔpdpC) and pdpD (FnΔpdpD) from F. novicida did not impact growth in mouse bone-marrow derived macrophages. Nonetheless, both FnΔpdpC and FnΔpdpD were highly attenuated when administered intradermally. Infected mice produced relatively normal anti-F. novicida serum antibodies. Further, splenocytes from infected mice controlled intramacrophage Francisella replication, indicating T cell priming, and mice immunized by infection with FnΔpdpC or FnΔpdpD survived secondary lethal parenteral challenge with either F. novicida or Francisella tularensis LVS. In contrast, deletion of pdpA (FnΔpdpA) ablated growth in macrophages in vitro. FnΔpdpA disseminated and replicated poorly in infected mice, accompanied by development of some anti-F. novicida serum antibodies. However, primed Th1 cells were not detected, and vaccinated mice did not survive even low dose challenge with either F. novicida or LVS. Taken together, these results suggest that successful priming of Th1 cells, and protection against lethal challenge, depends on expression of PdpA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号