首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

2.
3.
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16INK4A and p21CIP1, but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.  相似文献   

4.
Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.  相似文献   

5.
6.
Abstract: The relationship between extracellular signal-regulated protein kinase (ERK) activation and process extension in cultured bovine oligodendrocytes (OLGs) was investigated. Process extension was induced through the exposure of cultured OLGs to phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), for various intervals. During the isolation of these OLGs from bovine brain, the original processes were lost. Therefore, any reinitiation of process extension via PMA stimulation was easily discernible through morphological monitoring. It was found that exposure of OLGs to PMA for 10 min was enough to induce OLG process extension 24–72 h later. Furthermore, this extension was still evident at least 1 week after the initial PMA stimulation, indicating that OLGs do not need continuous PKC activation to sustain process extension. Control and PMA-stimulated OLGs were also subjected to immunocytochemistry using an anti-ERK antibody selective for the mitogen-activated protein kinases p42 Erk2 (ERK2) and p44 Erk1 (ERK1) isoforms. ERK immunoreactivity in the nucleus was evident after PMA stimulation of OLGs but not in control OLGs. In parallel experiments, the control and PMA-stimulated OLGs were purified by Mono Q fractionation and subjected to ERK phosphotransferase assays using [γ-32P]ATP and either myelin basic protein (MBP) or a synthetic peptide substrate based on the Thr97 phosphorylation site in MBP. These assays indicated that in PMA-treated OLGs, ERK activation was at least 12-fold higher than in control OLGs. Anti-ERK and anti-phosphotyrosine western blots of the assay fractions verified an enhanced phosphorylation of ERK1 and ERK2 in PMA-treated fractions relative to control fractions. When OLGs were pretreated for 15 min with the ERK kinase (MEK) inhibitor PD 098059 before PMA stimulation, they exhibited a 67% decrease in ERK activation as compared with cells treated with PMA alone. Furthermore, these MEK inhibitor-pretreated cells were still viable but showed no process extensions up to 1 week later. Therefore, we propose that a threshold level of ERK activity is required for the initiation of OLG process extension.  相似文献   

7.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

8.
9.
CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.  相似文献   

10.
Biological roles of ERK and MEK in signal transduction have been controversial. The aim of the current study was to determine the role of ERK1/2 in signaling through the ERK-MAPK cascade by using RNAi methodology. Transient transfection of erk1 or erk2 siRNA decreased the respective protein level to 3-8% in human lung fibroblasts. Interestingly, individual ERK isoform silencing resulted in a 2-fold reciprocal increase in phosphorylation of the alternate ERK isoform, with no change in respective total protein expression. Moreover, MEK was hyperphosphorylated as a result of combined ERK1 and ERK2 silencing, but was unaffected in individual ERK1 or ERK2 silenced cells. This hyperactivation of MEK was not due to activation of Raf family members, but rather was associated with PP2A downregulation. These data highlight the existence of a feedback loop in normal cells whereby ERK silencing is associated with decreased PP2A activity and consequent MEK activation.  相似文献   

11.
12.
13.
miR-380是不同羊驼毛色中差异表达的基因之一,但是否与黑色素生成有关未见报道。为了丰富调控黑色素生成的机制,挖掘黑色素生成路径中所涉及到的更多新的基因并揭示miR 380在黑色素细胞中的功能,本实验通过生物信息学方法预测出MAPK信号通路的成员MAP3K6是miR-380的靶基因之一。在293T细胞中共转染miR-380和MAP3K6后,与对照组相比双荧光报告酶活性下降(28.92 ± 25.63)%(P<0.01) ,下降趋势明显,说明MAP3K6可能是miR-380的靶基因之一;在羊驼黑色素细胞中转染miR-380后,MAP3K6、MEK1、ERK1/2、CREB和MITF在转录水平的表达量与NC组相比具有显著下降趋势,其中CREB下降趋势尤为显著(64.20 ± 54.30)%(P<0.01),Western印迹检测MAP3K6、p-MEK1、p-ERK1/2、CREB和MITF在蛋白质水平的表达与NC组相比下降趋势明显且p-MEK1和CREB基因下降极为显著,分别为(29.09 ± 10.68)%(P<0.001)和(47.12 ± 6.70)%(P<0.001),抑制组则反之。通过 Masson-Fontana黑色素颗粒染色法检测miR-380抑制黑色素细胞产生黑色素颗粒,用紫外分光度法检测真黑素(eumelanin,EM)和褐黑素(pheomelanin,PM),含量结果提示EM与PM含量分别下降为(38.63 ± 2.00)%(P<0.01),(54.10 ± 5.73)%(P<0.001)且PM含量下降极为显著。综上所述miR-380通过靶向抑制MAP3K6等基因的表达,从而对MAPK/ERK信号通路起调控作用,最终影响黑色素生成生物学功能,此研究对哺乳动物毛色形成机制和防止皮肤受紫外辐射有重要意义。  相似文献   

14.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

15.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1−/− colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.  相似文献   

16.
Adenosine monophosphate-activated protein kinase (AMPK) is a well-known serine/threonine kinase that has been implicated in modulation of glucose and fatty acid metabolism. Recent reports have also implicated AMPK in modulation of mucin secretion. In this study, the effects and signaling pathways of AMPK on MUC5B expression were investigated in human NCI-H292 airway epithelial cells. Metformin, as an activator of AMPK, induced MUC5B expression in a dose-dependent manner. Compound C, as an inhibitor of AMPK, inhibited metformin-induced MUC5B expression in a dose-dependent manner. Metformin significantly activated phosphorylation of AMPK; compound C inhibited metformin-activated phosphorylation of AMPK. Without treatment with metformin, there was no difference in MUC5B mRNA expression between Ad-dnAMPK transfected and wild-type adenovirus transfected NCI-H292 cells. However, after treatment with metformin, MUC5B mRNA expression was increased in wild-type adenovirus transfected NCI-H292 cells; MUC5B mRNA expression was significantly decreased in Ad-dnAMPK transfected NCI-H292 cells. Metformin activated phosphorylation of p38 mitogen-activated protein kinase (MAPK); compound C inhibited metformin-activated phosphorylation of p38 MAPK. SB203580, as an inhibitor of p38 MAPK, significantly inhibited metformin-induced MUC5B mRNA expression, while U0126, as an inhibitor of ERK1/2 MAPK, had no effect. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked metformin-induced MUC5B mRNA expression. In conclusion, results of this study show that AMPK induces MUC5B expression through the p38 MAPK signaling pathway in airway epithelial cells.  相似文献   

17.
In melanoma, several signaling pathways are constitutively activated. Among these, the protein kinase C (PKC) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Recently, it has been reported that tamoxifen, an anti-estrogen reagent, inhibits PKC signaling in estrogen-negative and estrogen-independent cancer cell lines. Thus, we investigated whether tamoxifen inhibited tumor cell invasion and metastasis in mouse melanoma cell line B16BL6. Tamoxifen significantly inhibited lung metastasis, cell migration, and invasion at concentrations that did not show anti-proliferative effects on B16BL6 cells. Tamoxifen also inhibited the mRNA expressions and protein activities of matrix metalloproteinases (MMPs). Furthermore, tamoxifen suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt through the inhibition of PKCα and PKCδ phosphorylation. However, other signal transduction factor, such as p38 mitogen-activated protein kinase (p38MAPK) was unaffected. The results indicate that tamoxifen suppresses the PKC/mitogen-activated protein kinase kinase (MEK)/ERK and PKC/phosphatidylinositol-3 kinase (PI3K)/Akt pathways, thereby inhibiting B16BL6 cell migration, invasion, and metastasis. Moreover, tamoxifen markedly inhibited not only developing but also clinically evident metastasis. These findings suggest that tamoxifen has potential clinical applications for the treatment of tumor cell metastasis.  相似文献   

18.
Mature striatal medium size spiny neurons express the dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels, or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include retinoic acid (RA), brain-derived neurotrophic factor, and estrogen (E2). We now demonstrate that RA regulates DARPP-32 mRNA and protein in primary striatal neuronal cultures. Furthermore, DARPP-32 induction by RA in vitro requires phosphatidylinositide 3-kinase, but is independent of tropomyosin-related kinase B, cyclin-dependent kinase 5, and protein kinase B. Using pharmacologic inhibitors of various isoforms of protein kinase C (PKC), we also demonstrate that DARPP-32 induction by RA in vitro is dependent on PKC zeta (PKCζ). Thus, the signal transduction pathways mediated by RA are very different than those mediating DARPP-32 induction by brain-derived neurotrophic factor. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro , including a novel, important pathway via which phosphatidylinositide 3-kinase regulates the contribution of PKCζ.  相似文献   

19.
Vascular smooth muscle cell (VSMC) migration is an important process in the development of vascular occlusive disease. To investigate mitogen regulation of VSMC migration, a cell-layer-scrape assay was used to measure migration 20 h after stimulation of VSMC with platelet-derived growth factor-BB (PDGF-BB), insulin-like growth factor I (IGF-I), or phorbol 12-myristate 13-acetate (PMA). The contributions of cell proliferation were eliminated by treatment of VSMC withhydroxyurea, which suppressed DNA synthesis.PDGF-BB stimulated VSMC migration 2.5-fold, while PMA and IGF-I stimulated migration 1.7- and 1.5-fold, respectively. The importance of protein kinase C (PKC), ERK, and phosphoinositide-3′ kinase (PI3 kinase) in mitogen-stimulated migration was investigated, using specific inhibitors of these signaling molecules. PDGF-BB-stimulated migration was inhibited by the general PKC inhibitor RO 31-8220 (40%), the MEK inhibitor PD98059 (31%), and the PI3 kinase inhibitor wortmannin (22%) but not by PMA-induced downregulation of conventional and novel PKC isoforms. IGF-I-stimulated migration was inhibited by RO 31-8220 (34%) and wortmannin (37%) but was much less affected by PD98059 (19%) or PKC downregulation (10%). PMA-stimulated migration was inhibited by RO 31-8220 (53%), PD98059 (50%), wortmannin (45%), and PKC downregulation (47%). Western analysis confirmed that ERK was strongly activated by PDGF-BB and PMA but not by IGF-I. To examine potentialin vivonegative regulators of VSMC migration, we analyzed the ability of heparin, an analogue of heparan sulfate, and TGFβ to attenuate mitogen-stimulated migration. Heparin but not TGFβ inhibited VSMC migration stimulated by all three mitogens. Delayed-addition experiments showed that RO 31-8220 retained substantial inhibitory activity even if added 3 h after PMA or IGF-I stimulation and 5 h after PDGF-BB addition, suggesting that sustained PKC activation is important for migration. The MEK inhibitor retained some effectiveness for 5 h after PDGF-BB stimulation but only 1 h after PMA addition. Western analysis showed ERK activation was transient after PMA treatment but sustained for 6 h after PDGF-BB treatment. Heparin strongly inhibited migration even if added 5–7 h after mitogen stimulation, suggesting that heparin may inhibit both short- and long-term signals necessary for migration. The present studies indicate that PMA and IGF-I activate a limited number of second messengers resulting in moderate stimulation of migration; in contrast PDGF-BB stimulates multiple signaling pathways resulting in strong stimulation of migration and lessened sensitivity to inhibitory signals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号