首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

2.
Generation of effective CTL responses is the goal of many vaccination protocols. However, to what extant T cell precursor frequencies will generate a CD8+ CTL response has not been elucidated properly. In this study, we employed a model system, in which naive CD4+ and CD8+ T cells derived from ovalbumin (OVA)-specific TCR transgenic OT II and OT I mice were used for adoptive transfer into wild-type, Iab−/− gene knockout and transgenic RIP-mOVA mice, and assessed OVA-pulsed DC (DCOVA)-stimulated CD8+ CTL responses in these mice. We demonstrated that (i) a critical threshold exists above which T cells precursor frequency cannot enhance the CTL responses in wild-type C57BL/6 mice, (ii) increasing CD8+ T cell precursors is required to generate CTL responses but with functional memory defect in absence of CD4+ T cell help, and (iii) increasing CD4+ and CD8+ T cell precursors overcomes immune suppression to DCOVA-stimulated CD8+ CTL responses in transgenic RIP-mOVA mice with OVA-specific self immune tolerance. Taken together, these findings may have important implications for optimizing immunotherapy against cancer.  相似文献   

3.
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na+, K+, 2Cl cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 μM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K+]o-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1-/- mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.  相似文献   

4.
Leishmania (L.) tropica is a causative agent of human cutaneous and viscerotropic leishmaniasis. Immune response to L. tropica in humans and experimental animals are not well understood. We previously established that L. tropica infection induces partial protective immunity against subsequent challenge infection with Leishmania major in BALB/c mice. Aim of the present study was to study immunologic mechanisms of protective immunity induced by L. tropica infection, as a live parasite vaccine, in BALB/c mouse model. Mice were infected by L. tropica, and after establishment of the infection, they were challenged by L. major. Our findings shows that L. tropica infection resulted in protection against L. major challenge in BALB/c mice and this protective immunity is associated with: (1) a DTH response, (2) higher IFN-γ and lower IL-10 response at one week post-challenge, (3) lower percentage of CD4+ lymphocyte at one month post-challenge, and (4) the source of IFN-γ and IL-10 were mainly CD4 lymphocyte up to one month post-challenge suggesting that CD4 lymphocytes may be responsible for protection induced by L. tropica infection in the studied intervals.  相似文献   

5.
Cytotoxin-associated gene A (CagA) acts directly on gastric epithelial cells. However, the roles of CagA in host adaptive immunity against Helicobacter pylori (H. pylori) infection are not fully understood. In this study, to investigate the roles of CagA in the development of H. pylori-induced chronic gastritis, we used an adoptive-transfer model in which spleen cells from C57BL/6 mice with or without H. pylori infection were transferred into RAG2−/− mice, with gastric colonization of either CagA+H. pylori or CagAH. pylori. Colonization of CagA+H. pylori but not CagAH. pylori in the host gastric mucosa induced severe chronic gastritis in RAG2−/− mice transferred with spleen cells from H. pylori-uninfected mice. In addition, when CagA+H. pylori-primed spleen cells were transferred into RAG2−/− mice, CD4+ T cell infiltration in the host gastric mucosa were observed only in RAG2−/− mice infected with CagA+H. pylori but not CagAH. pylori, suggesting that colonization of CagA+H. pylori in the host gastric mucosa is essential for the migration of H. pylori-primed CD4+ T cells. On the other hand, transfer of CagAH. pylori-primed spleen cells into CagA+H. pylori-infected RAG2−/− mice induced more severe chronic gastritis with less Foxp3+ regulatory T-cell infiltration as compared to transfer of CagA+H. pylori-primed spleen cells. In conclusion, CagA in the stomach plays an important role in the migration of H. pylori-primed CD4+ T cells in the gastric mucosa, whereas CagA-dependent T-cell priming induces regulatory T-cell differentiation, suggesting dual roles for CagA in the pathophysiology of H. pylori-induced chronic gastritis.  相似文献   

6.
CD14 deficient (CD14−/−) mice survived longer than wild-type (WT) C57BL/6J mice when inoculated with prions intracerebrally, accompanied by increased expression of anti-inflammatory cytokine IL-10 by microglia in the early stage of infection. To assess the immune regulatory effects of CD14 in detail, we compared the gene expression of pro- and anti-inflammatory cytokines in the brains of WT and CD14−/− mice infected with the Chandler strain. Gene expression of the anti-inflammatory cytokine IL-13 in prion-infected CD14−/− mice was temporarily upregulated at 75 dpi, whereas IL-13 gene expression was not upregulated in prion-infected WT mice. Immunofluorescence staining showed that IL-13 was mainly expressed in neurons of the thalamus at 75 dpi. These results suggest that CD14 can suppress IL-13 expression in neurons during the early stage of prion infection.  相似文献   

7.
This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R−/− mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [3H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 μM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R−/− mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 μM). ATP elicited [3H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 μM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 μM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice.  相似文献   

8.
9.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

10.
Il1rn−/− mice spontaneously develop arthritis and aortitis by an autoimmune mechanism and also develop dermatitis by an autoinflammatory mechanism. Here, we show that Rag2−/−Il1rn−/− mice develop spontaneous colitis with high mortality, making a contrast to the suppression of arthritis in these mice. Enhanced IL-17A expression in group 3 innate lymphoid cells (ILC3s) was observed in the colon of Rag2−/−Il1rn−/− mice. IL-17A-deficiency prolonged the survival of Rag2−/−Il1rn−/− mice, suggesting a pathogenic role of this cytokine in the development of intestinal inflammation. Although IL-17A-producing T cells were increased in Il1rn−/− mice, these mice did not develop colitis, because CD4+Foxp3+ regulatory T cell population was also expanded. Thus, excess IL-1 signaling and IL-1-induced IL-17A from ILC3s cause colitis in Rag2−/−Il1rn−/− mice in which Treg cells are absent. These observations suggest that the balance between IL-17A-producing cells and Treg cells is important to keep the immune homeostasis of the colon.  相似文献   

11.

Aims/hypothesis

Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR−/−) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca2 + handling in these islets.

Methods

Isolated islets from both LDLR−/− and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca2 + level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0–10 mmol/l) of methyl-beta-cyclodextrin (MβCD).

Results

The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR−/− than in WT islets, paralleled by an impairment of Ca2 + handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR−/− compared with WT islets. Removal of excess cholesterol from LDLR−/− islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca2 + handling was also normalized in cholesterol-depleted LDLR−/− islets. Cholesterol removal from WT islets by 0.1 and 1.0 mmol/l MβCD impaired both GSIS and Ca2 + handling. In addition, at 10 mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation.

Conclusion

Abnormally high (LDLR−/− islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca2 + handling. Normalization of cholesterol improves Ca2 + handling and insulin secretion in LDLR−/− islets.  相似文献   

12.
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1−/−) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1−/− mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1−/− mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1−/− mice. Second, an analysis of DA virus infection in CD1−/− mice was conducted. Although both wild-type and CD1−/− mice had similar clinical signs during the first 2 weeks after infection, CD1−/− mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1−/− mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1−/− mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.  相似文献   

13.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.  相似文献   

14.
In mice, splenic conventional dendritic cells (cDCs) can be separated, based on their expression of CD8α into CD8 and CD8+ cDCs. Although previous experiments demonstrated that injection of antigen (Ag)-pulsed CD8 cDCs into mice induced CD4 T cell differentiation toward Th2 cells, the mechanism involved is unclear. In the current study, we investigated whether OX40 ligand (OX40L) on CD8 cDCs contributes to the induction of Th2 responses by Ag-pulsed CD8 cDCs in vivo, because OX40–OX40L interactions may play a preferential role in Th2 cell development. When unseparated Ag-pulsed OX40L-deficient cDCs were injected into syngeneic BALB/c mice, Th2 cytokine (IL-4, IL-5, and IL-10) production in lymph node cells was significantly reduced. Splenic cDCs were separated to CD8 and CD8+ cDCs. OX40L expression was not observed on freshly isolated CD8 cDCs, but was induced by anti-CD40 mAb stimulation for 24 h. Administration of neutralizing anti-OX40L mAb significantly inhibited IL-4, IL-5, and IL-10 production induced by Ag-pulsed CD8 cDC injection. Moreover, administration of anti-OX40L mAb with Ag-pulsed CD8 cDCs during a secondary response also significantly inhibited Th2 cytokine production. Thus, OX40L on CD8 cDCs physiologically contributes to the development of Th2 cells and secondary Th2 responses induced by Ag-pulsed CD8 cDCs in vivo.  相似文献   

15.
We have recently shown that in macrophages proper operation of the survival pathways phosphatidylinositol-3-kinase (PI3K)/AKT and nuclear factor kappa B (NFkB) has an obligatory requirement for constitutive, non-regulated Ca2+ influx. In the present work we examined if Transient Receptor Potential Canonical 3 (TRPC3), a member of the TRPC family of Ca2+-permeable cation channels, contributes to the constitutive Ca2+ influx that supports macrophage survival. We used bone marrow-derived macrophages obtained from TRPC3−/− mice to determine the activation status of survival signaling pathways, apoptosis and their efferocytic properties. Treatment of TRPC3+/+ macrophages with the pro-apoptotic cytokine TNFα induced time-dependent phosphorylation of IκBα, AKT and BAD, and this was drastically reduced in TRPC3−/− macrophages. Compared to TRPC3+/+ cells TRPC3−/− macrophages exhibited reduced constitutive cation influx, increased apoptosis and impaired efferocytosis. The present findings suggest that macrophage TRPC3, presumably through its constitutive function, contributes to survival signaling and efferocytic properties.  相似文献   

16.
The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A−/−) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and interferon (IFN)-β were significantly increased in SR-A−/− mice compared to wild-type mice, and elevated nuclear factor kappa B (NFκB) activation was detected in SR-A−/− macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NFκB in vitro. SR-A deletion also promoted the nuclear translocation of NFκB and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A−/− macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.  相似文献   

17.
CD4+ T cell activation is controlled by signaling through the T cell receptor in addition to various co-receptors, and is also affected by their interactions with effector and regulatory T cells in the microenvironment. Inflammatory bowel diseases (IBD) are caused by the persistent activation and expansion of auto-aggressive CD4+ T cells that attack intestinal epithelial cells. However, the molecular basis for the persistent activation of CD4+ T cells in IBD remains unclear. In this study, we investigated how the CD98 heavy chain (CD98hc, Slc3a2) affected the development of colitis in an experimental animal model. Transferring CD98hc-deficient CD4+CD25 T cells into Rag2−/− mice did not cause colitis accompanied by increasing Foxp3+ inducible regulatory T cells. By comparison, CD98hc-deficient naturally occurring regulatory T cells (nTregs) had a decreased capability to suppress colitis induced by CD4+CD25 T cells, although CD98hc-deficient mice did not have a defect in the development of nTregs. Blocking CD98hc with an anti-CD98 blocking antibody prevented the development of colitis. Our results indicate that CD98hc regulates the expansion of autoimmune CD4+ T cells in addition to controlling nTregs functions, which suggests the CD98hc as an important target molecule for establishing strategies for treating colitis.  相似文献   

18.
Leishmania donovani (LD), the causative agent of visceral leishmaniasis (VL), extracts membrane cholesterol from macrophages and disrupts lipid rafts, leading to their inability to stimulate T cells. Restoration of membrane cholesterol by liposomal delivery corrects the above defects and offers protection in infected hamsters. To reinforce further the protective role of cholesterol in VL, mice were either provided a high-cholesterol (atherogenic) diet or underwent statin treatment. Subsequent LD infection showed that an atherogenic diet is associated with protection, whereas hypocholesterolemia due to statin treatment confers susceptibility to the infection. This observation was validated in apolipoprotein E knockout mice (AE) mice that displayed intrinsic hypercholesterolemia with hepatic granuloma, production of host-protective cytokines, and expansion of antileishmanial CD8+IFN- γ + and CD8+IFN- γ +TNF- α + T cells in contrast to the wild-type C57BL/6 (BL/6) mice when infected with LD. Normal macrophages from AE mice (N-AE-M ϕ) showed 3-fold higher membrane cholesterol coupled with increased fluorescence anisotropy (FA) compared with wild-type macrophage (N-BL/6-M ϕ). Characterization of in vitro LD-infected AE macrophage (LD-AE-M ϕ) revealed intact raft architecture and ability to stimulate T cells, which were compromised in LD-BL/6-Mϕ. This study clearly indicates that hypercholesterolemia, induced intrinsically or extrinsically, can control the pathogenesis of VL by modulating immune repertoire in favor of the host.  相似文献   

19.

Background

The mechanisms by which viruses cause asthma exacerbations are not precisely known. Previously, we showed that, in ovalbumin (OVA)-sensitized and -challenged mice with allergic airway inflammation, rhinovirus (RV) infection increases type 2 cytokine production from alternatively-activated (M2) airway macrophages, enhancing eosinophilic inflammation and airways hyperresponsiveness. In this paper, we tested the hypothesis that IL-4 signaling determines the state of macrophage activation and pattern of RV-induced exacerbation in mice with allergic airways disease.

Methods

Eight week-old wild type or IL-4 receptor knockout (IL-4R KO) mice were sensitized and challenged with OVA and inoculated with RV1B or sham HeLa cell lysate.

Results

In contrast to OVA-treated wild-type mice with both neutrophilic and eosinophilic airway inflammation, OVA-treated IL-4R KO mice showed increased neutrophilic inflammation with few eosinophils in the airways. Like wild-type mice, IL-4R KO mice showed OVA-induced airway hyperreactivity which was further exacerbated by RV. There was a shift in lung cytokines from a type 2-predominant response to a type 1 response, including production of IL-12p40 and TNF-α. IL-17A was also increased. RV infection of OVA-treated IL-4R KO mice further increased neutrophilic inflammation. Bronchoalveolar macrophages showed an M1 polarization pattern and ex vivo RV infection increased macrophage production of TNF-α, IFN-γ and IL-12p40. Finally, lung cells from OVA-treated IL-4R KO mice showed reduced CD206+ CD301+ M2 macrophages, decreased IL-13 and increased TNF-α and IL-17A production by F4/80+, CD11b+ macrophages.

Conclusions

OVA-treated IL-4R KO mice show neutrophilic airway inflammation constituting a model of allergic, type 1 cytokine-driven neutrophilic asthma. In the absence of IL-4/IL-13 signaling, RV infection of OVA-treated mice increased type 1 cytokine and IL-17A production from conventionally-activated macrophages, augmenting neutrophilic rather than eosinophilic inflammation. In mice with allergic airways inflammation, IL-4R signaling determines macrophage activation state and the response to subsequent RV infection.  相似文献   

20.
The pathways of thymic lymphomagenesis are classified as Rag-dependent or -independent according to their dependence on recombination-activating gene (Rag1/2) proteins. The role of the two-lymphoma pathways in oncogene rearrangements and the connection between lymphoma pathways and rearrangement mechanisms, however, remain obscure. We compared the incidence and latency of thymic lymphomas, and associated rearrangements of the representative oncogene Notch1 among Rag2?/?, ataxia telangiectasia mutated (Atm)?/?, and severe combined immune deficiency (scid) mice combined with Rag2 deficiency. Contrary to expectations, Rag2?/? mice were prone to thymic lymphoma development, suggesting the existence of a Rag2-independent lymphoma pathway in Rag2?/? mice. The lymphoma incidence in Rag2?/?Atm?/? mice was lower than that in Atm?/? mice, but higher than that in Rag2?/? mice, indicating that Atm?/? mice develop lymphomas through both pathways. Scid mice developed lymphomas with an incidence and latency similar to Rag2?/?scid mice, suggesting that Rag2-mediated V(D)J recombination-driven events are not necessarily required for lymphomagenesis in scid mice. Notch1 rearrangement mechanisms were classified as Rag2-dependent or Rag2-independent based on the presence of recombination signal-like sequences at rearranged sites. In Rag2?/? lymphomas, Notch1 must be rearranged independently of Rag2 function, implying that Rag2?/? mice are susceptible to lymphomagenesis due to the presence of other rearrangement mechanisms. The results in Atm?/? mice suggest that Notch1 was rearranged through both lymphoma pathways. In scid mice, the frequency of Rag2-mediated rearrangements was relatively low compared with that in wild-type mice, suggesting that the Rag2-independent lymphoma pathway prevails in the development of thymic lymphomas in scid mice. Thus, two rearrangement mechanisms underlie the lymphoma pathways and constitute the mechanistic bases for lymphomagenesis, thereby providing the molecular criteria for distinguishing between Rag2-dependent and Rag2-independent lymphoma pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号