首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Atopic dermatitis (AD) is a pruritic, chronically relapsing skin disease in which Th2 cells play a crucial role in cutaneous and extracutaneous immune reactions. In humans, CD11c+CD123- myeloid dendritic cells (mDC) and CD11c-CD123+ plasmacytoid DC (pDC) orchestrate the decision-making process in innate and acquired immunity. Since the number and function of these blood dendritic cell (DC) subsets reportedly reflect the host immune status, we studied the involvement of the DC subsets in the pathogenesis of AD. Patients with AD had an increased DC number and a low mDC:pDC ratio with pDC outnumbering mDC in the peripheral blood compared with normal subjects and psoriasis patients (a Th1 disease model group). The mDC:pDC ratio was correlated with the total serum IgE level, the ratio of IFN-gamma-producing blood cells:IL-4-producing blood cells, and the disease severity. In vitro allogeneic stimulation of naive CD4+ cells with atopic DC showed that the ability of pDC for Th1 induction was superior or comparable to that of mDC. In skin lesions, pDC infiltration was in close association with blood vessels expressing peripheral neural addressins. Therefore, compartmental imbalance and aberrant immune function of the blood DC subsets may deviate the Th1/Th2 differentiation and thus induce protracted allergic responses in AD.  相似文献   

3.
Psoriasis is characterized by hyperplasia of the epidermis and infiltration of leukocytes into both the dermis and epidermis. IL-23, a key cytokine that induces T(H)17 cells, has been found to play a critical role in the pathogenesis of psoriasis. Apilimod is a small-molecule compound that selectively suppresses synthesis of IL-12 and IL-23. An open-label clinical study of oral administration of apilimod was conducted in patients with psoriasis. Substantial improvements in histology and clinical measurements were observed in patients receiving 70 mg QD. The expression of IL-23p19 and IL-12/IL-23p40 in skin lesions was significantly reduced in this dose group, with a simultaneous increase in IL-10 observed. A decrease in the levels of T(H)1 and T(H)17 cytokines/chemokines in skin lesions followed these p19 and p40 changes. In parallel, a reduction in skin-infiltrating CD11c(+) dendritic cells and CD3(+) T cells was seen, with a greater decrease in the CD11c(+) population. This was accompanied by increases in T and B cells, and decreases in neutrophils and eosinophils in the periphery. This study demonstrates the immunomodulatory activity of apilimod and provides clinical evidence supporting the inhibition of IL-12/IL-23 synthesis for the treatment of T(H)1- and T(H)17-mediated inflammatory diseases.  相似文献   

4.
Dendritic cells (DCs) are the key antigen-presenting cells controlling the initiation of the T cell- dependent immune response. Currently, two peripheral blood DC subsets have been identified on the basis of their CD11c expression. The CD11c-negative (CD11c-) DCs (expressing high levels of CD123) are designated as lymphoid-derived DCs (DC2), whereas the CD11c+/CD123- cells, do identify the myeloid-derived DCs (DC1). A growing number of studies have been conducted in recent years on both the quantitative and functional alterations of DCs and their subsets in different pathological conditions. In the present study we assessed, using two different flow cytometric (FCM) techniques, the normal profile of blood DCs in 50 italian adult healthy subjects (M/F: 25/25, median age 42.5 years, range 20-65). The percentage and the absolute number of DCs and their subsets, were obtained starting from whole blood samples in two ways: 1) by calculating the number of DCs when gated as lineage-negative/ HLA-DR+ and identifing the two subsets as CD11c+ (DC1) and CD123+ (DC2) and 2) by using three specific markers: BDCA.1 (CD11c+ high/CD123+ low, myeloid DCs); BDCA.2 (CD11c-/ CD123+high, lymphoid DCs); BDCA.3 (CD11c+low /CD123-, myeloid DCs). Six parameters, 4-color FCM analysis were perfomed with a BD FACSCanto equipment. The mean values of the percentage and of the absolute number were: 0.5+/-0.2% and 30+/-11 cells/microL for DCs; 0.2+/-0.1% and 15+/-6 cells/microL for DC1; 0.2+/-0.1% and 15+/-7 cells/microL for DC2. The same values were: 0.2+/-0.1% and 16+/-7 cells/microL for BDCA.1; 0.2+/-0.1% and 12+/-7 cells/microL for BDCA.2; 0.02+/-0.01% and 2+/-1 cells/microL for BDCA.3, respectively. Our study confirmes that the two types of FCM analysis are able to identify the DC population. We also provides the first reference values on normal rates and counts of blood DCs in italian adult healthy subjects.  相似文献   

5.
Psoriasis is a chronic inflammatory disorder characterized by an erythematous scaly plaque of the skin and is occasionally accompanied by systemic complications. In the psoriatic lesions, an increased number of cytokine-producing dendritic cells and activated T cells are observed, which indicate that psoriasis is a prototype of an immune-mediated dermatosis. During the last decade, emerging studies demonstrate novel roles for the dendritic cell subsets in the process of disease initiation and maintenance of psoriasis. In addition, recently discovered anti-psoriatic therapies, which specifically target inflammatory cytokines produced by lesional dendritic cells, bring much better clinical improvement compared to conventional treatments. These new therapies implicate the crucial importance of dendritic cells in psoriasis pathogenesis. This review will summarize and discuss the dendritic cell subsets of the human skin and their pathophysiological involvement in psoriasis based on mouse- and patient-oriented studies. [BMB Reports 2014; 47(2): 60-68]  相似文献   

6.
A growing number of studies are being performed on the role of dendritic cells (DCs) in the etiopathogenesis of various conditions. Therefore, it is extremely important to establish the best comparable methods for the determination of the absolute count of blood dendritic cells (BDCs) or their subsets, and the reference normal values for comparisons. The aim of our study was to assess a normal profile of BDCs in the non-cultured human blood of healthy Polish volunteers. BDCs were detected among peripheral blood mononuclear cells (PBMC) from 99 healthy people, aged 18-56. Based on the panel of novel anti-BDCA1, BDCA2 and BDCA3 monoclonal antibodies (MoAbs), three main subpopulations of BDCs were distinguished: two myeloid types of BDCs, MDC1(BDCA-1+/ CD11c+ /HLA-DR+) or MDC2 (BDCA-3+/CD32-/CD64-/HLA-DR+), and a plasmacytoid subtype, PDC (BDCA-2+/CD123+/HLA-DR+). The number and percentage of BDCs were correlated with the age, gender, photosensitivity (phototype, minimal erythemal dose -- MED) and morphological parameters of the healthy volunteers. BDCs represented 0.83% of the PBMC and the median total BDC number was 44.0 cell/microl. The total BDC number correlated with the WBC count (rho=0.40, p=0.001) as well as with the lymphocyte and monocyte counts (rho=0.20, p=0.045 and rho=0.26, p=0.009, respectively). The median percentage of the MDC1 count (0.20%) was twice as high as the MDC2 count (0.10%). The median PDC count was 28.2 cell/microl, and these cells represented 0.50% of the PBMC. There was a positive correlation between PDC and skin photosensitivity (rho=0.28, p=0.005). An inverse correlation between the PDC count and the age of the examined volunteers was also found (rho=-0.22, p=0.029). Our study provides the first referential data on normal rates and counts of BDCs and their subpopulations, assessed by the new panel of anti-BDCA MoAbs, in healthy Polish subjects. The method used in the study allowed the determination of BDCs and their subset numbers in a relatively small blood volume.  相似文献   

7.
Liver X receptors (LXRs) among many nuclear receptors expressed within the skin. It has been widely recognized in the regulation of genes involved in immunity, inflammation and lipid biosynthesis. LXRs genes are involved in regulation of keratinocytes, melanocytes as well as sebocytes and they might have an important role in pathogenesis of skin disorders such as psoriasis, vitiligo and acne vulgaris. The aim of this study was to detect if there is a difference in the expression of LXRs in psoriatic, vitiligo and acne vulgaris. This study included 60 patients; 20 psoriatic patients, 20 vitiligo patients, 20 acne patients and 20 controls with matched age and sex. The level of LXR α and β were measured in the lesional skin and in the control skin by PCR technique from plaque-type psoriasis, perilesional vitiligo and inflammatory acne as well as from controls. The mean values of LXR α and β in the lesional skin of psoriatic patients were significantly higher than that in the controls (P < 0.001). While, the mean values of LXR α and β in the perilesional vitiligo and acne patients were significantly lower than the controls (P < 0.001). LXR was significantly inversely correlated to the severity of psoriasis while there were insignificant correlation with acne and vitiligo. In conclusion, changes in the level of LXR α and β expression could be a consequence of certain downstream genes in some skin disorders.  相似文献   

8.
The MHC class I-like protein CD1d is a nonpolymorphic molecule that plays a central role in development and activation of a subset of T cells that coexpress receptors used by NK cells (NK-T cells). Recently, T cells bearing NK receptors were identified in acute and chronic lesions of psoriasis. To determine whether NK-T cells could interact with epidermal cells, we examined the pattern of expression of CD1d in normal skin, psoriasis, and related skin disorders, using a panel of CD1d-specific mAbs. CD1d was expressed by keratinocytes in normal skin, although expression was at a relatively low level and was generally confined to upper level keratinocytes immediately beneath the lipid-rich stratum corneum. In contrast, there was overexpression of CD1d in chronic, active psoriatic plaques. CD1d could be rapidly induced on keratinocytes in normal skin by physical trauma that disrupted barrier function or by application of a potent contact-sensitizing agent. Keratinocytes displayed enhanced CD1d following exposure to IFN-gamma. Combining CD1d-positive keratinocytes with human NK-T cell clones resulted in clustering of NK-T cells, and while no significant proliferation ensued, NK-T cells became activated to produce large amounts of IFN-gamma. We conclude that CD1d can be expressed in a functionally active form by keratinocytes and is up-regulated in psoriasis and other inflammatory dermatoses. The ability of IFN-gamma to enhance keratinocyte CD1d expression and the subsequent ability of CD1d-positive keratinocytes to activate NK-T cells to produce IFN-gamma, could provide a mechanism that contributes to the pathogenesis of psoriasis and other skin disorders.  相似文献   

9.
10.
11.
Background aimsThis study aimed to characterize the immune effectors contained in apheresis samples obtained from patients with grafts mobilized with plerixafor and granulocyte colony-stimulating factor (G-CSF) (P+G) compared with grafts mobilized with G-CSF alone (G).MethodsAliquots of apheresis samples were obtained from 36 patients with malignant diseases after mobilization with G (n = 18) or P+G (n = 18). The phenotype and cytokine secretion profile of T cell and dendritic cell subsets were characterized by multicolor cytometry including intracellular cytokine staining.ResultsIn grafts collected after mobilization with P+G, there was a significantly higher percentage of CD3+ T cells compared with samples collected after mobilization with G alone. On a functional level, a significant increase of interferon-γ and tumor necrosis factor-α secreting CD8+ T cells was observed in the P+G group compared with the G group. CD4+Foxp3+ regulatory T cells were similar in both groups but exhibited a lower expression of inducible costimulatory molecule and a significantly higher expression of CD127 in the P+G group. Myeloid dendritic cells (MDCs) and BDCA3+ dendritic cells were similar in both groups. In contrast, plasmacytoid dendritic cells (PDCs) (CD123+BDCA2+HLA-DR+) were significantly increased in the P+G grafts, leading to a higher PDC-to-MDC ratio. PDCs mobilized by P+G displayed different functional markers—a higher percentage of ILT7+ PDCs and decreased expression of CD86—suggesting a potential regulatory capacity of PDCs mobilized by P+G.ConclusionsGrafts mobilized with P+G exhibited major different functional features compared with grafts mobilized with G alone, suggesting that such grafts may have an impact on patient outcome after autologous stem cell transplantation.  相似文献   

12.
We have developed a murine model that facilitates the structural and functional analysis in vivo of dendritic cell (DC)-mediated phagocytosis of prostate epithelial cells. Recombinant human Flt3 ligand (rhFL) expands the number of dendritic cells in lymphoid and non-lymphoid tissues of mice. We show that rhFL also induced the ingress of dendritic cells into murine prostate, which involutes via epithelial apoptosis after surgical castration. Intact or castrated C57BL/6 and syngeneic transgenic adenocarcinoma of mouse prostate (TRAMP) mice were treated with rhFL or PBS control. Prostate and spleen were then studied by flow cytometry and immunohistochemistry.The number of prostatic CD11c+ and CD11b+ dendritic cells increased significantly in rhFL-treated mice compared with PBS-treated control mice and this effect was greatly augmented by castration of the mice. The immunophenotype of rhFL-mobilized prostatic cells was consistent with that of Langerhans cells (MHC class II+, CD11c+,CD11b+, DEC-205+, CD8 alpha-).MHC class II+ and CD11c+ dendritic cells that were present in the prostate glands of rhFL-treated and castrated C57BL/6 mice were intimately associated with TUNEL+ inclusions, which suggests that Langerhans-type dendritic cells in prostate participated in the clearance of apoptotic cells. Expression of MHC class II, CD54, CD80 and CD86 by prostatic dendritic cells was not up-regulated after castration and freshly isolated rhFL-induced prostate cells were unable to prime allogeneicT cells unless they were activated by culture either on plastic or with recombinant soluble CD40 ligand. Our data suggest that rhFL-mobilized prostatic dendritic cells resemble the functionally immature dendritic cells, which reside in peripheral tissues and contribute to the maintenance of peripheral tolerance.  相似文献   

13.

Background

Although recent studies indicate a crucial role for IL-17A and IL-22 producing T cells in the pathogenesis of psoriasis, limited information is available on their frequency and heterogeneity and their distribution in skin in situ.

Methodology/Principal Findings

By spectral imaging analysis of double-stained skin sections we demonstrated that IL-17 was mainly expressed by mast cells and neutrophils and IL-22 by macrophages and dendritic cells. Only an occasional IL-17pos, but no IL-22pos T cell could be detected in psoriatic skin, whereas neither of these cytokines was expressed by T cells in normal skin. However, examination of in vitro-activated T cells by flow cytometry revealed that substantial percentages of skin-derived CD4 and CD8 T cells were able to produce IL-17A alone or together with IL-22 (i.e. Th17 and Tc17, respectively) or to produce IL-22 in absence of IL-17A and IFN-γ (i.e. Th22 and Tc22, respectively). Remarkably, a significant proportional rise in Tc17 and Tc22 cells, but not in Th17 and Th22 cells, was found in T cells isolated from psoriatic versus normal skin. Interestingly, we found IL-22 single-producers in many skin-derived IL-17Apos CD4 and CD8 T cell clones, suggesting that in vivo IL-22 single-producers may arise from IL-17Apos T cells as well.

Conclusions/Significance

The increased presence of Tc17 and Tc22 cells in lesional psoriatic skin suggests that these types of CD8 T cells play a significant role in the pathogenesis of psoriasis. As part of the skin-derived IL-17Apos CD4 and CD8 T clones developed into IL-22 single-producers, this demonstrates plasticity in their cytokine production profile and suggests a developmental relationship between Th17 and Th22 cells and between Tc17 and Tc22 cells.  相似文献   

14.
Despite the well demonstrated fundamental role of dendritic cells (DC) in generating antitumor immunity in experimental conditions, to date there are only few preliminary studies which investigate the percent of DC in the peripheral blood of cancer patients. Several cell surface markers have now been described which are specific to cultured DC, however their expression in vivo is still controversial. Recently, however, two DC subsets, consisting of immature and mature DC, have been shown to be present in peripheral blood, which can be recognized as CD123+ and CD11c+ cells, respectively. On this basis, we decided to investigate the presence of both mature and immature DC in the peripheral blood of early or advanced cancer patients. The study included 40 solid tumor patients, 18 of whom had a locally limited disease, while the other 22 showed distant organ metastases. CD123+ and CD11c+ cells were detected by FACS using monoclonal antibodies, and expressed as the percent of total leukocytes. The control group consisted of 50 healthy subjects. The mean percent of both CD123+ and CD11c+ cells was significantly lower in cancer patients than in controls. Moreover, the mean percent of both DC subsets was significantly lower in metastatic patients than in the non-metastatic ones. This study, demonstrating significantly lower percents of both immature and mature DC in the peripheral blood of cancer patients, particularly in those with distant organ metastases, suggests that DC deficiency may play a role in inducing cancer-related immunosuppression. Therefore, the demonstration of a diminished percent of DC in peripheral blood may represent a new interesting biological marker predicting a poor prognosis in human neoplasms, as with lymphocytopenia, the unfavourable prognostic significance of which has been well demonstrated.  相似文献   

15.
Controversial results have been observed in mouse models regarding the role of lymphoid tissues in prion pathogenesis. To investigate the role of dendritic cells (DC), we used a transgenic mouse model. In this model (CD11c-N17Rac1), a significant reduction of CD8+ CD11c(hi) DC has been described, and the remaining CD8+ DC demonstrate a reduced capacity for the uptake of apoptotic cells. After intraperitoneal prion infection, significantly longer incubation times were observed in CD11c-N17Rac1 mice than in controls, indicating that a defect in CD8+ CD11c(hi) DC significantly impedes neuroinvasion after intraperitoneal infection. In contrast, no distinct differences were observed between CD11c-N17Rac1 mice and controls after oral infection. This provides evidence that oral and intraperitoneal prion infections differ in lymphoreticular requirements.  相似文献   

16.
Dendritic cells (DCs) in the rheumatoid arthritis (RA) joint mediate the immunopathological process and act as a potent antigen presenting cell. We compared the expression of co-stimulatory and adhesion molecules on DCs in RA patients versus controls with traumatic joint lesions and evalulated the correlation between the immunophenotypical presentation of DCs and the clinical status of the disease. Samples of peripheral venous blood, synovial fluid (SF) and synovial tissue (ST) were obtained from 10 patients with RA at the time of hip or knee replacement and from 9 control patients with knee arthroscopy for traumatic lesions. Clinical status was appreciated using the DAS28 score. Blood, SF and dissociated ST cell populations were separated by centrifugation and analyzed by flow cytometry. Cells phenotypes were identified using three-color flow cytometry analysis for the following receptors HLA-DR, CD80, CD83, CD86, CD11c, CD18, CD54, CD58, CD3, CD4, CD8, CD19, CD20, CD14, CD16, CD56. HLA-DR molecules, co-stimulatory receptors CD80, CD86, CD83 and adhesion molecules CD18, CD11c, CD54, CD58, were analyzed by two-color immunofluorescence microscopy on ST serial sections. In patients with active RA (DAS28>5.1) we found a highly differentiated subpopulation of DCs in the ST and SF that expressed an activated phenotype (HLA-DR, CD86+, CD80+, CD83+, CD11c+, CD54+, CD58+). No differences were found between circulating DCs from RA patients and control patients. Our data suggest an interrelationship between clinical outcome and the immunophenotypical presentation of DCs. Clinical active RA (DAS28>5.1) is associated with high incidence of activated DCs population in the ST and SF as demonstrated by expression of adhesion and co-stimulatory molecules.  相似文献   

17.
Telocytes, a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including human skin. Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disease characterized by fibrosis of the skin and internal organs. We presently investigated telocyte distribution and features in the skin of SSc patients compared with normal skin. By an integrated immunohistochemical and transmission electron microscopy approach, we confirmed that telocytes were present in human dermis, where they were mainly recognizable by their typical ultrastructural features and were immunophenotypically characterized by CD34 expression. Our findings also showed that dermal telocytes were immunophenotypically negative for CD31/PECAM‐1 (endothelial cells), α‐SMA (myofibroblasts, pericytes, vascular smooth muscle cells), CD11c (dendritic cells, macrophages), CD90/Thy‐1 (fibroblasts) and c‐kit/CD117 (mast cells). In normal skin, telocytes were organized to form three‐dimensional networks distributed among collagen bundles and elastic fibres, and surrounded microvessels, nerves and skin adnexa (hair follicles, sebaceous and sweat glands). Telocytes displayed severe ultrastructural damages (swollen mitochondria, cytoplasmic vacuolization, lipofuscinic bodies) suggestive of ischaemia‐induced cell degeneration and were progressively lost from the clinically affected skin of SSc patients. Telocyte damage and loss evolved differently according to SSc subsets and stages, being more rapid and severe in diffuse SSc. Briefly, in human skin telocytes are a distinct stromal cell population. In SSc skin, the progressive loss of telocytes might (i) contribute to the altered three‐dimensional organization of the extracellular matrix, (ii) reduce the control of fibroblast, myofibroblast and mast cell activity, and (iii) impair skin regeneration and/or repair.  相似文献   

18.
Although the role of regulatory T cells (Tregs) during malaria infection has been studied extensively, such studies have focused exclusively on the role of Treg during the blood stage of infection; little is known about the detailed mechanisms of Tregs and sporozoite deposition in the dermis by mosquito bites. In this paper we show that sporozoites introduced into the skin by mosquito bites increase the mobility of skin Tregs and dendritic cells (DCs). We also show differences in MHC class II and/or CD86 expression on skin-resident dendritic cell subtypes and macrophages. From the observed decrease of the number of APCs into draining lymph nodes, suppression of CD28 expression in conventional CD4 T cells, and a low homeostatic proliferation of skin-migrated CD4 T found in nude mice indicate that Tregs may play a fundamental role during the initial phase of malaria parasite inoculation into the mammalian host.  相似文献   

19.
The presence of telocytes (TCs) as distinct interstitial cells was previously documented in human dermis. TCs are interstitial cells completely different than dermal fibroblasts. TCs are interconnected in normal dermis in a 3D network and may be involved in skin homeostasis, remodelling, regeneration and repair. The number, distribution and ultrastructure of TCs were recently shown to be affected in systemic scleroderma. Psoriasis is a common inflammatory skin condition (estimated to affect about 0.1–11.8% of population), a keratinization disorder on a genetic background. In psoriasis, the dermis contribution to pathogenesis is frequently eclipsed by remarkable epidermal phenomena. Because of the particular distribution of TCs around blood vessels, we have investigated TCs in the dermis of patients with psoriasis vulgaris using immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM). IHC and IF revealed that CD34/PDGFRα‐positive TCs are present in human papillary dermis. More TCs were present in the dermis of uninvolved skin and treated skin than in psoriatic dermis. In uninvolved skin, TEM revealed TCs with typical ultrastructural features being involved in a 3D interstitial network in close vicinity to blood vessels in contact with immunoreactive cells in normal and treated skin. In contrast, the number of TCs was significantly decreased in psoriatic plaque. The remaining TCs demonstrated multiple degenerative features: apoptosis, membrane disintegration, cytoplasm fragmentation and nuclear extrusion. We also found changes in the phenotype of vascular smooth muscle cells in small blood vessels that lost the protective envelope formed by TCs. Therefore, impaired TCs could be a ‘missed’ trigger for the characteristic vascular pathology in psoriasis. Our data explain the mechanism of Auspitz's sign, the most pathognomonic clinical sign of psoriasis vulgaris. This study offers new insights on the cellularity of psoriatic lesions and we suggest that TCs should be considered new cellular targets in forthcoming therapies.  相似文献   

20.
Therapeutic modulation of psoriasis with targeted immunosuppressive agents defines inflammatory genes associated with disease activity and may be extrapolated to a wide range of autoimmune diseases. Cyclosporine A (CSA) is considered a "gold standard" therapy for moderate-to-severe psoriasis. We conducted a clinical trial with CSA and analyzed the treatment outcome in blood and skin of 11 responding patients. In the skin, as expected, CSA modulated genes from activated T cells and the "type 1" pathway (p40, IFN-gamma, and STAT-1-regulated genes). However, CSA also modulated genes from the newly described Th17 pathway (IL-17, IL-22, and downstream genes S100A12, DEFB-2, IL-1beta, SEPRINB3, LCN2, and CCL20). CSA also affected dendritic cells, reducing TNF and inducible NO synthase (products of inflammatory TNF- and inducible NO synthase-producing dendritic cells), CD83, and IL-23p19. We detected 220 early response genes (day 14 posttreatment) that were down-regulated by CSA. We classified >95% into proinflammatory or skin resident cells. More myeloid-derived than activated T cell genes were modulated by CSA (54 myeloid genes compared with 11 lymphocyte genes), supporting the hypothesis that myeloid derived genes contribute to pathogenic inflammation in psoriasis. In circulating mononuclear leukocytes, in stark contrast, no inflammatory gene activity was detected. Thus, we have constructed a genomic signature of successful treatment of psoriasis which may serve as a reference to guide development of other new therapies. In addition, these data also identify new gene targets for therapeutic modulation and may be applied to wide range of autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号