首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus replication induces the expression of antiviral type I (IFN-alphabeta) and type III (IFN-lambda1-3 or IL-28A/B and IL-29) IFN genes via TLR-dependent and -independent pathways. Although type III IFNs differ genetically from type I IFNs, their similar biological antiviral functions suggest that their expression is regulated in a similar fashion. Structural and functional characterization of the IFN-lambda1 and IFN-lambda3 gene promoters revealed them to be similar to IFN-beta and IFN-alpha genes, respectively. Both of these promoters had functional IFN-stimulated response element and NF-kappaB binding sites. The binding of IFN regulatory factors (IRF) to type III IFN promoter IFN-stimulated response element sites was the most important event regulating the expression of these genes. Ectopic expression of the components of TLR7 (MyD88 plus IRF1/IRF7), TLR3 (Toll/IL-1R domain-containing adapter-inducing factor), or retinoic acid-inducible gene I (RIG-I) signal transduction pathways induced the activation of IFN-lambda1 promoter, whereas the IFN-lambda3 promoter was efficiently activated only by overexpression of MyD88 and IRF7. The ectopic expression of Pin1, a recently identified suppressor for IRF3-dependent antiviral response, decreased the IFN promoter activation induced by any of these three signal transduction pathways, including the MyD88-dependent one. To conclude, the data suggest that the IFN-lambda1 gene is regulated by virus-activated IRF3 and IRF7, thus resembling that of the IFN-beta gene, whereas IFN-lambda2/3 gene expression is mainly controlled by IRF7, thus resembling those of IFN-alpha genes.  相似文献   

2.
3.
4.
Interferon regulatory factor 3 (IRF3)‐induced type I interferon (I‐IFN) production plays key roles in both antiviral and autoimmune responses. IRF3 phosphorylation, dimerization, and nuclear localization are needed for its activation and function, but the precise regulatory mechanisms remain to be explored. Here, we show that the serine/threonine kinase AKT2 interacts with IRF3 and phosphorylates it on Thr207, thereby attenuating IRF3 nuclear translocation in a 14‐3‐3ε‐dependent manner and reducing I‐IFN production. We further find that AKT2 expression is downregulated in viral‐infected macrophages or in monocytes and tissue samples from systemic lupus erythematosus (SLE) patients and mouse models. Akt2‐deficient mice exhibit increased I‐IFN induction and reduced mortality in response to viral infection, but aggravated severity of SLE. Overexpression of AKT2 kinase‐inactive or IRF3‐T207A mutants in zebrafish supports that AKT2 negatively regulates I‐IFN production and antiviral response in a kinase‐dependent manner. This negative role of AKT2 in IRF3‐induced I‐IFN production suggests that AKT2 may be therapeutically targeted to differentially regulate antiviral infection and SLE.  相似文献   

5.
6.
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.  相似文献   

7.
Xu WD  Zhang YJ  Xu K  Zhai Y  Li BZ  Pan HF  Ye DQ 《Cytokine》2012,58(3):317-320
Systemic lupus erythematosus is an autoimmune disease attributing to a combination of genetic and environmental factors. Abnormal expression/function of type I interferons has been demonstrated with the pathogenesis of SLE, especially IFN-α, which can be regulated by IFN regulatory factor 7 (IRF7). Single nucleotide polymorphisms (SNPs) near/in IRF7 have been substantiated related to onset of SLE, moreover, regulation of IRF7 expression/function has been found important in SLE. Therefore, we will discuss the association of IRF7 and SLE based on recent understandings to render more information about the mechanisms of IRF7 might perform in.  相似文献   

8.
9.
10.
11.
12.
IFIT 家族由一类受干扰素诱导表达并具有TPR 结构域的蛋白组成, 但是在鱼类关于IFIT 基因的研究还很少。研究利用哺乳类IFIT 家族基因IFI56 的序列搜索斑马鱼基因组数据库鉴定出一个未知基因, 该基因具有哺乳类IFIT 家族保守的基因组结构, 编码蛋白具有保守的TPR 结构域, 暂命名为IFIT-A。RT-PCR 分析表明, Poly I:C 能够诱导IFIT-A 基因转录水平上调。与哺乳类IFIT 家族基因相似, 斑马鱼IFIT-A 启动子存在ISG 基因特有的典型ISRE 结构域。荧光素酶活性实验揭示Poly I:C 和重组IFN 蛋白能激活斑马鱼IFIT-A 启动子活性。此外, 过量表达IFN 调控因子IRF3 和IRF7 能诱导斑马鱼IFIT-A 启动子活性。实验结果证明IFIT-A基因是斑马鱼IFIT 家族成员, IRF3 和IRF7 在其诱导表中具有重要调控作用。    相似文献   

13.
Interleukin-10 is a predominantly anti-inflammatory cytokine that inhibits macrophage and dendritic cell function, but can acquire proinflammatory activity during immune responses. We investigated whether type I IFNs, which are elevated during infections and in autoimmune diseases, modulate the activity of IL-10. Priming of primary human macrophages with low concentrations of IFN-alpha diminished the ability of IL-10 to suppress TNF-alpha production. IFN-alpha conferred a proinflammatory gain of function on IL-10, leading to IL-10 activation of expression of IFN-gamma-inducible, STAT1-dependent genes such as IFN regulatory factor 1, IFN-gamma-inducible protein-10 (CXCL10), and monokine induced by IFN-gamma (CXCL9). IFN-alpha priming resulted in greatly enhanced STAT1 activation in response to IL-10, and STAT1 was required for IL-10 activation of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma expression in IFN-alpha-primed cells. In control, unprimed cells, IL-10 activation of STAT1 was suppressed by constitutive activity of protein kinase C and Src homology 2 domain-containing phosphatase 1. These results demonstrate that type I IFNs regulate the balance between IL-10 anti- and proinflammatory activity, and provide insight into molecular mechanisms that regulate IL-10 function. Gain of IL-10 proinflammatory functions may contribute to its pathogenic role in autoimmune diseases characterized by elevated type I IFN levels, such as systemic lupus erythematosus.  相似文献   

14.
15.
IL-15 plays a seminal role in innate immunity through enhancing the cytotoxic function as well as cytokine production by NK and T cells. We have previously shown that exposure of PBMC as well as monocytic cells to different viruses results in immediate up-regulation of IL-15 gene expression and subsequent NK cell activation as an innate immune response of those cells to these viruses. However, no signaling pathway involved in this up-regulation has been identified. Here we show for the first time that HSV-1-induced up-regulation of IL-15 gene expression is independent of viral infectivity/replication. IL-15 gene is up-regulated by HSV-1 in human monocytes, but not in CD3+ T cells. HSV-1 induces the phosphorylation of protein tyrosine kinases (PTKs) and protein kinase C (PKC) for inducing IL-15 expression in monocytic cells. Inhibitors for PTKs reduced HSV-1-induced PTK activity, DNA binding activity of NF-kB as well as IL-15 gene expression. In contrast, an inhibitor for membrane-bound tyrosine kinases had no effect on these events. Experiments using PKC inhibitors revealed that phosphorylation of PKC zeta/lambda (PKC zeta/lambda), DNA binding activity of NF-kB and HSV-1-induced up-regulation of IL-15 were all decreased. Furthermore, we found that HSV-1-induced IL-15 up-regulation was also dependent on PTKs regulation of PKC phosphorylation. Thus, we conclude that IL-15 up-regulation in HSV-1-treated monocytic cells is dependent on the activity of both PTKs and PKC zeta/lambda.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号