首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

3.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

4.
《Cytotherapy》2014,16(2):191-202
Background aimsMesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α–pretreated human bone marrow–derived MSCs on resting or activated T cells.MethodsMSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed.ResultsUnprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions.ConclusionsUnprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo.  相似文献   

5.
C3H mice infected with Leishmania amazonensis develop persistent, localized lesions with high parasite loads. During infection, memory/effector CD44hiCD4+ T cells proliferate and produce IL-2, but do not polarize to a known effector phenotype. Previous studies have demonstrated IL-12 is insufficient to skew these antigen-responsive T cells to a functional Th1 response. To determine the mechanism of this IL-12 unresponsiveness, we used an in vitro assay of repeated antigen activation. Memory/effector CD44hiCD4+ T cells did not increase proliferation in response to either IL-2 or IL-12, although these cytokines upregulated CD25 expression. Neutralization of IL-2 enhanced CD4+ T cell proliferation in response to IL-12. This cross-regulation of IL-12 responsiveness by IL-2 was confirmed in vivo by treatment with anti-IL-2 antibodies and IL-12 during antigen challenge of previously infected mice. These results suggest that during chronic infection with L. amazonensis, IL-2 plays a dominant, immunosuppressive role independent of identifiable conventional Treg cells.  相似文献   

6.
The effect of cyclosporin A (CsA) on cytokine production in the tissue chamber model of acute inflammation was investigated. CsA caused a dose-related inhibition of interleukin 1β (IL-1β) production in both normal and athymic mice, confirming earlier conclusions that this effect is not T cell dependent (ED50s 40 and 53 mg/kg p.o., respectively).Tumour necrosis factor alpha (TNF-α) levels were similarly affected with ED50s of 40 and 58 mg/kg p.o. for normal and athymic mice, respectively. By contrast, CsA inhibited interleukin 6 (IL-6) production only in normal mice (ED5027 mg/kg p.o.)Differences in the absolute production of the three cytokines in normal and athymic mice were also noted. IL-1β and IL-6 levels were two-fold higher in athymic mice, while for TNF-α, there was no difference between the two groups.The present findings support the authors' original hypothesis, that the inhibitory mechanism of CsA on IL-1β is not mediated via T cells. The same mechanism also seems responsible for the inhibition of TNF-α production, but not for IL-6, where inhibition by CsA appears to require the presence of T cells.  相似文献   

7.
Lenalidomide (Revlimid®; CC-5013) and pomalidomide (CC-4047) are IMiDs® proprietary drugs having immunomodulatory properties that have both shown activity in cancer clinical trials; lenalidomide is approved in the United States for a subset of MDS patients and for treatment of patients with multiple myeloma when used in combination with dexamethasone. These drugs exhibit a range of interesting clinical properties, including anti-angiogenic, anti-proliferative, and pro-erythropoietic activities although exact cellular target(s) remain unclear. Also, anti-inflammatory effects on LPS-stimulated monocytes (TNF-α is decreased) and costimulatory effects on anti-CD3 stimulated T cells, (enhanced T cell proliferation and proinflammatory cytokine production) are observed These drugs also cause augmentation of NK-cell cytotoxic activity against tumour-cell targets. Having shown that pomalidomide confers T cell-dependant adjuvant-like protection in a preclinical whole tumour-cell vaccine-model, we now show that lenalidomide and pomalidomide strongly inhibit T-regulatory cell proliferation and suppressor-function. Both drugs inhibit IL-2-mediated generation of FOXP3 positive CTLA-4 positive CD25high CD4+ T regulatory cells from PBMCs by upto 50%. Furthermore, suppressor function of pre-treated T regulatory cells against autologous responder-cells is abolished or markedly inhibited without drug related cytotoxicity. Also, Balb/C mice exhibit 25% reduction of lymph-node T regulatory cells after pomalidomide treatment. Inhibition of T regulatory cell function was not due to changes in TGF-β or IL-10 production but was associated with decreased T regulatory cell FOXP3 expression. In conclusion, our data provide one explanation for adjuvant properties of lenalidomide and pomalidomide and suggest that they may help overcome an important barrier to tumour-specific immunity in cancer patients.  相似文献   

8.
Using an adoptive transfer model of experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein (MBP)-reactive lymph node cells (LNC), we have shown that depletion of gammadelta T cells from LNC resulted in diminished severity of EAE in recipient mice, both clinically and histopathologically. The reduced potency of gammadelta T cell-depleted LNC to induce EAE correlated with decreased cell proliferation in response to MBP. The gammadelta T cell effect upon the threshold of MBP-induced LNC proliferation and EAE transfer was restored by reconstitution of gammadelta T cells derived from either MBP-immunized or naive mice, indicating that this effect was not Ag specific. The enhancing effect of gammadelta T cells on MBP-induced proliferation and EAE transfer required direct cell-to-cell contact with LNC. The gammadelta T cell effect upon the LNC response to MBP did not involve a change in expression of the costimulatory molecules CD28, CD40L, and CTLA-4 on TCRalphabeta(+) cells, and CD40, CD80, and CD86 on CD19(+) and CD11b(+) cells. However, depletion of gammadelta T cells resulted in significant reduction in IL-12 production by LNC. That gammadelta T cells enhanced the MBP response and severity of adoptive EAE by stimulating IL-12 production was supported by experiments showing that reconstitution of the gammadelta T cell population restored IL-12 production, and that gammadelta T cell depletion-induced effects were reversed by the addition of IL-12. These results suggest a role for gammadelta T cells in the early effector phase of the immune response in EAE.  相似文献   

9.
Many examples of reciprocal endocrine interactions between parasites and hosts have been found in insects, arthropods and mammals. Cysticercosis produced by Taenia solium metacestodes is a widely distributed parasite infection that affects the human and the pig. Taenia crassiceps experimental murine cysticercosis has been used to explore the role of biological factors involved in host–parasite interactions. We had shown that T. crassiceps cysticercosis affects the serum concentration of steroid hormones and the reproduction behavior of the male mice host. In an effort to understand the biology of the parasite, we had investigated the parasite capacity to produce sex steroids. For this purpose, T. crassiceps cysticerci were incubated in the presence of different steroid precursors. TLC and recrystallization procedures showed that testosterone is produced from 3H-androstenedione in cysticerci. The conversion of 3H-testosterone to androstenedione, although present is much less significant. In addition, we had studied the production of testosterone by T. solium cysticerci. For this purpose, cysticerci were dissected from pork meat and incubated as above described. The results showed that T. solium cysticerci also produce testosterone. We have speculated about the importance of androgens in the growth of T. crassiceps cysticerci and found that the addition of the antiandrogen flutamide to the culture media of the parasites significantly decreased 3H-thymidine incorporation. We therefore hypothesized, that the ability of cysticerci to produce testosterone from steroid precursors might be important for the parasite growth and development.  相似文献   

10.
Several recent reports have described an effector role for CD8(+) T cells during EAE. We have previously demonstrated reduced disease incidence and severity in CD43(-/-) mice following MOG immunization, and attributed this attenuation in disease progression to the effects of CD43 deficiency on CD4+ T cells. Here, we extend those studies to examine the effects of the loss of CD43 on MOG-specific CD8+ T cells. A reduced frequency of MOG-specific CD8+ T cells following immunization was observed in CD43(-/-) mice relative to wild-type controls, as demonstrated by intracellular cytokine and MHC tetramer staining. In addition, adoptive transfer of CD8+ MOG 35-55-primed LN cells from CD43(-/-) mice resulted in significantly attenuated EAE induction as compared to recipients of wild-type CD8+ MOG-primed cells. Analysis of intracellular signaling intermediates revealed a deficiency in the ability of MOG-specific CD8+ T cells to phosphorylate ERK in response to antigen. These results characterize an important role for CD43 during the activation and expansion of autoreactive MOG-specific CD8+ T cells.  相似文献   

11.
12.
In the present study, we examined the role of tumor necrosis factor (TNF) in interleukin (IL)-10 production by dendritic cells (DCs) using bone-marrow derived DCs from wild type (WT) and TNF-α knockout (TNF-α−/−) mice. Toll-like receptor (TLR) stimulation induced substantial level of IL-10 production by WT DCs, but significantly low level of IL-10 production by TNF-α−/− DCs. In contrast, no significant difference was detected in IL-12 p40 production between WT and TNF-α−/− DCs. Addition of TNF-α during TLR stimulation recovered the impaired ability of TNF-α−/− DCs for IL-10 production. This recovery appeared to be associated with an activation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/Akt following the TNF-α addition. Blocking these kinases significantly inhibited IL-10 production by TNF-α−/− DCs stimulated with TLR ligands plus TNF-α. Thus, TNF-α may be a key molecule to regulate the balance between anti-inflammatory versus inflammatory cytokine production in DCs.  相似文献   

13.
Kim KH  Kim DI  Kim SH  Jung EM  Kang JH  Jeung EB  Yang MP 《Cytokine》2011,56(2):224-230
Conjugated linoleic acid (CLA) can stimulate or inhibit immune cell function, and among CLA isomers, trans-10, cis-12 (t10c12)-CLA was shown to participate in the modulation of pro- or anti-inflammatory cytokine secretion. The objective of this study was to examine the effect of t10c12-CLA on tumor necrosis factor (TNF)-α production by lipopolysaccharide (LPS)-stimulated porcine peripheral blood mononuclear cells (PBMCs). In addition, we determined whether these effects were associated with the induction of interleukin (IL)-10. Treatment of LPS-unstimulated porcine PBMCs with t10c12-CLA increased both TNF-α expression and IL-10 production. However, treatment of LPS-stimulated porcine PBMCs with t10c12-CLA suppressed TNF-α production and increased the levels of IL-10. Furthermore, treatment of LPS-stimulated porcine PBMCs with IL-10 suppressed the production of TNF-α. The effects of t10c12-CLA on TNF-α expression by both LPS-naïve and LPS-stimulated PBMCs were inhibited by IL-10 treatment. The suppressive effects of t10c12-CLA on TNF-α production by LPS-stimulated porcine PBMCs were inhibited by an anti-IL-10 polyclonal antibody. These findings suggest that t10c12-CLA has an immunostimulatory effect on porcine PBMCs mediated via the up-regulation of TNF-α production, and an anti-inflammatory effect in LPS-stimulated PBMCs mediated via the down-regulation of TNF-α production, and that both is likely to be associated with the induction of IL-10.  相似文献   

14.
It has been reported that IL-33 contributes to potentiation of Th2 inflammatory diseases and protection against helminth infection. Increased plasma IL-33 levels have been observed in patients with severe falciparum malaria, however, the role of IL-33 in malaria remains unclear. Here we report that IL-33 enhances inflammatory responses in malaria infection. ST2-deficiency altered severity of inflammation in the liver and serum levels of pro-inflammatory cytokines such as TNF-α and IL-6, and IL-13 that is a Th2 cytokine during Plasmodium chabaudi infection. IL-13-deficient mice have similar phenotype with ST2-deficient mice during P. chabaudi infection. Furthermore, ST2- and IL-13-deficiency reduced mortality from P. chabaudi infection. These results indicate that IL-33/ST2 can induce production of proinflammatory cytokines, such as TNF-α and IL-6, through production of IL-13 in P. chabaudi-infected BALB/c mice, suggesting that IL-33/ST2 play a critical role in inflammatory responses to malaria infection. Thus, these findings may define a novel therapeutic target for patients with severe malaria.  相似文献   

15.
《Cytotherapy》2014,16(4):535-544
Background aimsMultiple sclerosis (MS) is considered to be a T-cell–mediated disease. Although MS remits with corticosteroid treatment, the disease relapses on discontinuation of therapy. Human amniotic epithelial cells (hAEC) from the placenta are readily accessible in large quantities and have anti-inflammatory properties. Previously we reported that hAEC given near disease onset ameliorated clinical signs and decreased myelin oligodendrocyte glycoprotein (MOG)-specific immune responses in MOG-induced experimental autoimmune encephalomyelitis (EAE), an experimental MS model.MethodsTo examine the therapeutic effect of hAEC in a clinically relevant setting, we first treated MOG peptide–induced EAE mice with a corticosteroid, prednisolone, in drinking water to induce remission. hAEC were then infused intravenously into the remitted mice. Anti-MOG antibodies in serum were detected by enzyme-linked immunoassay. Splenocyte proliferation was assessed by 3H-thymidine incorporation. Immune cell subpopulations in spleens and lymph nodes and secreted cytokines in splenocyte culture were quantified by flow cytometry. Central nervous system histology was examined with the use of hematoxylin and eosin, Luxol fast blue and immunostaining.ResultsWith cessation of prednisolone treatment, hAEC delayed EAE relapse for 7 days, and, after another 7 days, largely remitted disease in six of eight responder mice. Splenocyte proliferation was suppressed, anti-MOG35–55 antibodies in serum were decreased and interleukin-2 and interleukin-5 production by splenocytes were elevated after hAEC treatment. In the central nervous system, hAEC-treated mice had decreased demyelination and fewer macrophages in the inflammatory infiltrates. hAEC treatment also increased CD4+CD25+FoxP3+ regulatory T cells in inguinal lymph nodes.ConclusionsThese data demonstrate that the therapeutic effects of hAEC after corticosteroid treatment in an MS model probably are the consequence of peripheral immunoregulation. We suggest that hAEC may have potential as a cell therapy for remitted MS.  相似文献   

16.
To determine the relative contributions of DC subsets in the development of protective immunity to Listeria monocytogenes we examined the relationship between maturation, bacterial burden, and T cell priming capacity of four well characterized subsets of splenic DC following infection with Lm. CD8α+, CD4+, and CD8αCD4 DC and the B220+ plasmacytoid DC (pDC) were compared for abundance and costimulatory molecule expression at 24, 48, and 72 h post i.v. infection. We further determined the bacterial burden associated with each DC subset and their relative capacities to prime CD8+ T cells at 24 hpi. The CD8α+ DC displayed the highest level of maturation, association with live bacteria, and T cell activation potential. Second, the CD4+ DC were also mature, yet were associated with fewer bacteria, and stimulated T cell proliferation, but not IFN-γ production. The CD8αCD4 DC showed a modest maturation response and were associated with a high number of bacteria, but failed to induce T cell proliferation ex vivo. pDC displayed a strong maturation response, but were not associated with detectable bacteria and also failed to stimulate T cell activation. Finally, we measured the cytokine responses in these subsets and determined that IL-12 was produced predominantly by the CD8+ DC, correlating with the ability of this subset DC to induce IFN-γ production in T cells. We conclude that Listeria-specific CD8+ T cell activation in the spleen is most effectively achieved by infection-induced maturation of the CD8α+ DC subset.  相似文献   

17.
The comprehension of the molecular mechanisms leading to Trypanosoma cruzi-elicited heart dysfunction might contribute to design novel therapeutic strategies aiming to ameliorate chronic Chagas disease cardiomyopathy. In C3H/He mice infected with the low virulence T. cruzi Colombian strain, the persistent cardiac inflammation composed mainly of CCR5+ T lymphocytes parallels the expression of CC-chemokines in a pro-inflammatory IFN-γ and TNF-α milieu. The chronic myocarditis is accompanied by increased frequency of peripheral CCR5+LFA-1+ T lymphocytes. The treatment of chronically T. cruzi-infected mice with Met-RANTES, a selective CCR1/CCR5 antagonist, led to a 20–30% decrease in CD4+ cell numbers as well as IL-10, IL-13 and TNF-α expression. Further, Met-RANTES administration impaired the re-compartmentalization of the activated CD4+CCR5+ lymphocytes. Importantly, Met-RANTES treatment resulted in significant reduction in parasite load and fibronectin deposition in the heart tissue. Moreover, Met-RANTES treatment significantly protected T. cruzi-infected mice against connexin 43 loss in heart tissue and CK-MB level enhancement, markers of heart dysfunction. Thus, our results corroborate that therapeutic strategies based on the modulation of CCR1/CCR5-mediated cell migration and/or effector function may contribute to cardiac tissue damage limitation during chronic Chagas disease.  相似文献   

18.

Background

Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs) stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs) and plasmacytoid (pDCs) are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown.

Methods

Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d) prior to transplanting into C57BL/6 mice (H-2b), followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+).

Results

Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production.

Conclusion

Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.  相似文献   

19.
20.
The autophagy proteins (Atg) modulate not only innate but also adaptive immunity against pathogens. We examined the role of dendritic cell Atg5 and Atg7 in the production of IL-2 and IFN-γ by Toxoplasma gondii-reactive CD4+ T cells. T. gondii-reactive mouse CD4+ T cells exhibited unimpaired production of IL-2 and IFN-γ when stimulated with Atg7-deficient mouse dendritic cells that were infected with T. gondii or pulsed with T. gondii lysate antigens. In marked contrast, dendritic cells deficient in Atg5 induced diminished CD4+ T cell production of IL-2 and IFN-γ. This defect was not accompanied by changes in costimulatory ligand expression on dendritic cells or impaired production of IL-12 p70, IL-1β or TNF-α. Knockdown of Irg6a in dendritic cells did not affect CD4+ T cell cytokine production. These results indicate that Atg5 and Atg7 in dendritic cells play differential roles in the modulation of IL-2 and IFN-γ production by T. gondii-reactive CD4+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号