首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processing of antigens by proteases in the endocytic compartments of antigen presenting cells (APC) is essential to make them suitable for presentation as antigenic peptides to T lymphocytes. Several proteases of the cysteine, aspartyl and serine classes are involved in this process. It has been speculated, that the aspartyl protease cathepsin E (CatE) is involved in antigen processing in B cell line, monocyte-derived dendritic cells (DC) and murine DC. Here we show the expression of CatE in primary human B cells and DC, which was only elevated in B cells after induction with phorbol 12-myristate 13-acetate (PMA), resulted in enhanced presentation of tetanus toxin C-fragment (TTC) to the respective T cells. Inhibition of aspartyl proteases using pepstatin-A-penetratin (PepA-P), a highly efficient, cell-permeable aspartyl protease inhibitor, reduced significantly T cell activation in PMA activated B cells but not in PMA activated myeloid DC (mDC). Thus we suggest that CatE is important in the processing of TTC in primary human B cells.  相似文献   

2.
Antigen presentation by MHC class II molecules requires cysteine proteases (CP) for two convergent proteolytic processes: stepwise degradation of the invariant chain (Ii) and generation of immunogenic peptides. Their activity is controlled by intracellular CP inhibitors, including presumably the p41 isoform of invariant chain (p41 Ii), which is in vitro a potent inhibitor of cathepsin L but not of cathepsin S. In order to evaluate the inhibitory potential of p41 Ii in antigen-presenting cells (APC), these three proteins were stained in lymph node tissue using specific monoclonal and polyclonal antibodies. The most abundant labelling was observed in subcapsular (cortical) and trabecular sinuses of the lymph node. In this area the most frequent APC were macrophages, as confirmed by the CD68 cell marker. Using confocal fluorescence microscopy, co-localisation of p41 Ii with cathepsin S, but not with cathepsin L was found in these cells. Our results are consistent with the hypothesis that cathepsin S participates in degradation of the invariant chain, but they do not support the association between cathepsin L and p41 Ii in APC.  相似文献   

3.
Members of the papain family of cysteine proteases (cathepsins) mediate late stage processing of MHC class II-bound invariant chain (Ii), enabling dissociation of Ii, and binding of antigenic peptide to class II molecules. Recognition of cell surface class II/Ag complexes by CD4(+) T cells then leads to T cell activation. Herein, we demonstrate that a pan-active cathepsin inhibitor, SB-331750, attenuated the processing of whole cell Ii p10 to CLIP by Raji cells, and DBA/1, SJL/J, and C57BL/6 splenocytes. In Raji cells and C57BL/6 splenocytes, SB-331750 inhibited class II-associated Ii processing and reduced surface class II/CLIP expression, whereas in SB-331750-treated DBA/1 and SJL/J splenocytes, class II-associated Ii processing intermediates were undetectable. Incubation of lymph node cells/splenocytes from collagen-primed DBA/1 mice and myelin basic protein-primed SJL/J mice with Ag in the presence of SB-331750 resulted in concentration-dependent inhibition of Ag-induced proliferation. In vivo administration of SB-331750 to DBA/1, SJL/J, and C57BL/6 mice inhibited splenocyte processing of whole cell Ii p10 to CLIP. Prophylactic administration of SB-331750 to collagen-immunized/boosted DBA/1 mice delayed the onset and reduced the severity of collagen-induced arthritis (CIA), and reduced paw tissue levels of IL-1beta and TNF-alpha. Similarly, treatment of myelin basic protein-primed SJL/J lymph node cells with SB-331750 delayed the onset and reduced the severity of adoptively transferred experimental autoimmune encephalomyelitis (EAE). Therapeutic administration of SB-331750 reduced the severity of mild/moderate CIA and EAE. These results indicate that pharmacological inhibition of cathepsins attenuates CIA and EAE, potentially via inhibition of Ii processing, and subsequent Ag-induced T cell activation.  相似文献   

4.
Cathepsins are crucial in antigen processing in the major histocompatibility complex class II (MHC II) pathway. Within the proteolytic machinery, three classes of proteases (i.e., cysteine, aspartic, and serine proteases) are present in the endocytic compartments. The combined action of these proteases generates antigenic peptides from antigens, which are loaded to MHC II molecules for CD4+ T cell presentation. Detection of active serine proteases in primary human antigen-presenting cells (APCs) is restricted because of the small numbers of cells isolated from the peripheral blood. For this purpose, we developed a novel highly sensitive α-aminoalkylphosphonate diphenyl ester (DAP) activity-based probe to detect the serine protease cathepsin G (CatG) in primary APCs and after Epstein-Barr virus (EBV) exposure. Although CatG activity was not altered after short-term exposure of EBV in primary myeloid dendritic cells 1 (mDC1s), the aspartic protease cathepsin D (CatD) was reduced, suggesting that EBV is responsible for mitigating the presentation of a model antigen tetanus toxoid C-fragment (TTCF) by reduction of CatD. In addition, CatG activity was reduced to background levels in B cells during cell culture; however, these findings were independent of EBV transformation. In conclusion, our activity-based probe can be used for both Western blot and 96-well-based high-throughput CatG detection when cell numbers are limited.  相似文献   

5.
In dendritic cells (DC), newly synthesized MHCII is directed to endosomes by its associated invariant chain (Ii). Here, Ii is degraded after which MHCII is loaded with peptides. In immature DC, ubiquitination of peptide‐loaded MHCII drives its sorting to lysosomes for degradation. Ubiquitination of MHCII is strongly reduced in response to inflammatory stimuli, resulting in increased expression of MHCII at the plasma membrane. Whether surface exposure of MHCII is also regulated during DC maturation by changing the rate of Ii degradation remained unresolved by conflicting results in the literature. We here pinpoint experimental problems that have contributed to these controversies and demonstrate that immature and mature DC degrade Ii equally efficient at proper culture conditions. Only when DC were cultured in glutamine containing media, endosome acidification and Ii degradation were restricted in immature DC and enhanced in response to lipopolysaccharide (LPS). These effects are caused by ammonia, a glutamine decomposition product. This artificial behavior could be prevented by culturing DC in media containing a stable dipeptide as glutamine source. We conclude that Ii degradation is a prerequisite for but not a rate limiting step in MHCII processing.  相似文献   

6.
The p41 splice variant of major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains a 65 aa segment that binds to the active site of cathepsin L (CatL), a lysosomal cysteine protease involved in MHC class II-restricted antigen presentation. This segment is absent from the predominant form of Ii, p31. Here we document the in vivo significance of the p41-CatL interaction. By biochemical means and electron microscopy, we demonstrate that the levels of active CatL are strongly reduced in bone marrow-derived antigen-presenting cells that lack p41. This defect mainly concerns the mature two-chain forms of CatL, which depend on p41 to be expressed at wild-type levels. Indeed, pulse-chase analysis suggests that these mature forms of CatL are degraded by endocytic proteases when p41 is absent. We conclude that p41 is required for activity of CatL by stabilizing the mature forms of the enzyme. This suggests that p41 is not merely an inhibitor of CatL enzymatic activity, but serves as a chaperone to help maintain a pool of mature enzyme in late-endocytic compartments of antigen-presenting cells.  相似文献   

7.
CD74 is known as the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) that regulates the cell biology and functions of MHC class II molecules. Class II MHC and Ii expression was believed to be restricted to classical antigen-presenting cells (APC); however, during inflammation, other cell types, including mucosal epithelial cells, have also been reported to express class II MHC molecules. Given the importance of Ii in the biology of class II MHC, we sought to examine the expression of Ii by gastric epithelial cells (GEC) to determine whether class II MHC molecules in these nonconventional APC cells were under the control of Ii and to further support the role that these cells may play in local immune and inflammatory responses during Helicobacter pylori infection. Thus we examined the expression of Ii on GEC from human biopsy samples and then confirmed this observation using independent methods on several GEC lines. The mRNA for Ii was detected by RT-PCR, and the various protein isoforms were also detected. Interestingly, these cells have a high level expression of surface Ii, which is polarized to the apical surface. These studies are the first to demonstrate the constitutive expression of Ii by human GEC.  相似文献   

8.
Dendritic cells (DC) play a pivotal role as antigen presenting cells (APC) and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70) during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii.  相似文献   

9.
Autoantigenic peptides resulting from self-proteins such as proinsulin are important players in the development of type 1 diabetes mellitus (T1D). Self-proteins can be processed by cathepsins (Cats) within endocytic compartments and loaded to major histocompatibility complex (MHC) class II molecules for CD4(+) T cell inspection. However, the processing and presentation of proinsulin by antigen-presenting cells (APC) in humans is only partially understood. Here we demonstrate that the processing of proinsulin by B cell or myeloid dendritic cell (mDC1)-derived lysosomal cathepsins resulted in several proinsulin-derived intermediates. These intermediates were similar to those obtained using purified CatG and, to a lesser extent, CatD, S, and V in vitro. Some of these intermediates polarized T cell activation in peripheral blood mononuclear cells (PBMC) from T1D patients indicative for naturally processed T cell epitopes. Furthermore, CatG activity was found to be elevated in PBMC from T1D patients and abrogation of CatG activity resulted in functional inhibition of proinsulin-reactive T cells. Our data suggested the notion that CatG plays a critical role in proinsulin processing and is important in the activation process of diabetogenic T cells.  相似文献   

10.
The class II-associated invariant chain peptide (CLIP) region of the invariant chain (Ii) directly influences MHC class II presentation by occupying the MHC class II peptide-binding groove, thereby preventing premature loading of peptides. Different MHC class II alleles exhibit distinct affinities for CLIP, and a low affinity interaction has been associated with decreased dependence upon H-2M and increased susceptibility to rheumatoid arthritis, suggesting that decreased CLIP affinity alters the MHC class II-bound peptide repertoire, thereby promoting autoimmunity. To examine the role of CLIP affinity in determining the MHC class II peptide repertoire, we generated transgenic mice expressing either wild-type human Ii or human Ii containing a CLIP region of low affinity for MHC class II. Our data indicate that although degradation intermediates of Ii containing a CLIP region with decreased affinity for MHC class II do not remain associated with I-A(b), this does not substantially alter the peptide repertoire bound by MHC class II or increase autoimmune susceptibility in the mice. This implies that the affinity of the CLIP:MHC class II interaction is not a strong contributory factor in determining the probability of developing autoimmunity. In contrast, in the absence of H-2M, MHC class II peptide repertoire diversity is enhanced by decreasing the affinity of CLIP for MHC class II, although MHC class II cell surface expression is reduced. Thus, we show clearly, in vivo, the critical chaperone function of H-2M, which preserves MHC class II molecules for high affinity peptide binding upon dissociation of Ii degradation intermediates.  相似文献   

11.
We have attempted to elucidate an involvement of cathepsin E (CE) in major histocompatibility complex class II-mediated antigen presentation by microglia. In primary cultured murine microglia, CE was localized mainly in early endosomes and its expression level was markedly increased upon stimulation with interferon-gamma. Pepstatin A, a specific inhibitor of aspartic proteases, significantly inhibited interleukin-2 production from an OVA-(266-281)-specific T helper cell hybridomas upon stimulation with native OVA presented by interferon-gamma-treated microglia. However, pepstatin A failed to inhibit the presentation of OVA-(266-281) peptide. The possible involvement of CE in the processing of native OVA into antigenic peptide was further substantiated by that digested fragments of native OVA by CE could be recognized by OVA-specific Th cells. Cathepsin D also degraded native OVA into antigenic peptide, whereas microglia prepared from cathepsin D-deficient mice retained an ability for antigen presentation. On the other hand, the requirement for cysteine proteases such as cathepsins S and B in the processing of invariant chain (Ii) was confirmed by immunoblot analyses in the presence of their specific inhibitors. In conclusion, CE is required for the generation of an antigenic epitope from OVA but not for the processing of Ii in microglia.  相似文献   

12.
Before a class II molecule can be loaded with antigenic material and reach the surface to engage CD4+ T cells, its chaperone, the class II-associated invariant chain (Ii), is degraded in a stepwise fashion by proteases in endocytic compartments. We have dissected the role of cathepsin S (CatS) in the trafficking and maturation of class II molecules by combining the use of dendritic cells (DC) from CatS(-/-) mice with a new active site-directed probe for direct visualization of active CatS. Our data demonstrate that CatS is active along the entire endocytic route, and that cleavage of the lysosomal sorting signal of Ii by CatS can occur there in mature DC. Genetic disruption of CatS dramatically reduces the flow of class II molecules to the cell surface. In CatS(-/-) DC, the bulk of major histocompatibility complex (MHC) class II molecules is retained in late endocytic compartments, although paradoxically, surface expression of class II is largely unaffected. The greatly diminished but continuous flow of class II molecules to the cell surface, in conjunction with their long half-life, can account for the latter observation. We conclude that in DC, CatS is a major determinant in the regulation of intracellular trafficking of MHC class II molecules.  相似文献   

13.
By using the model Ag, chicken OVA, the proteolytic events required for effective presentation of the antigenic epitope, OVA323-339 to H-2d-restricted Th cells were investigated. First, the ability of aspartyl and thiol proteases to generate antigenic fragments of Ova in vitro was determined. It was found that cathepsin D, an aspartyl protease, digested OVA to fragments that could be recognized by Th cells without further processing by APC. Cathepsin B, a thiol protease, was unable to generate antigenic fragments of OVA in vitro. These results provide evidence that APC do not require thiol protease activity for processing OVA. In contrast, APC were unable to present OVA to Th cells when thiol protease inhibitors were added to the incubation. Taken together, these observations indicate that thiol proteases may be important, not for processing, OVA, but for presentation of processed fragments by APC. This conclusion is supported by evidence obtained from experiments in which APC were treated with thiol protease inhibitors before addition of the antigenic peptide, OVA323-339. Under these conditions, the capacity of I-Ad at the cell surface to present OVA323-339 to Th cells was reduced. The results of these experiments provide evidence that Ag presentation of OVA may be achieved through the action of two different classes of proteases: aspartyl proteases such as cathepsin D, which process OVA to antigenic fragments, and thiol proteases such as cathepsin B, which are important for expression of functional MHC II molecules by APC.  相似文献   

14.
The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecules access antigenic peptides by distinct, but poorly defined pathways in the absence of Ii. Here, investigations demonstrate that nonprofessional APC such as human fibroblasts lacking Ii internalize antigenic peptides prior to the binding of these ligands to recycling class II molecules. By contrast, fibroblast lines expressing Ii favor exogenous peptides binding directly to cell surface class II molecules without a need for ligand internalization. Endocytosis of class II molecules was enhanced in cells lacking Ii compared with Ii-expressing APC. These results suggest enhanced reliance on the endocytic recycling pathway for functional class II presentation in nonprofessional APC.  相似文献   

15.
Cathepsin B cleavage of Ii from class II MHC alpha- and beta-chains   总被引:1,自引:0,他引:1  
Class II MHC-associated invariant chain (Ii) might regulate binding of digested peptides to the Ag binding site (desetope) of class II MHC proteins by directly or allosterically blocking that site until cleavage and release of Ii from MHC alpha- and beta-chains at the time of peptide charging. We examined the cleavage and release of Ii from class II MHC alpha/beta Ii trimers by cathepsin B, which has been shown by others to colocalize with class II MHC molecules in intracellular compartments and to generate antigenic peptide fragments. Cathepsin B at pH 5.0 cleaved and released Ii from class II MHC alpha- and beta-chains. Cathepsin B digested Ii from alpha- and beta-chains in a dose-dependent fashion, yielding 23-, 21-, and 10-kDa fragments. Blockage of cathepsin B activity with leupeptin restored the 2D(nonequilibrium pH gradient gel electrophoresis/SDS) PAGE patterns of Ii and sialic acid-derivatized forms of Ii seen without the protease. The fragmentation pattern of cathepsin D treatment was different from that of cathepsin B, yielding 25-kDa intermediates.  相似文献   

16.
A genetic deficiency of the cysteine protease cathepsin L (Ctsl) in mice results in impaired positive selection of conventional CD4+ T helper cells as a result of an incomplete processing of the MHC class II associated invariant chain or incomplete proteolytic generation of positively selecting peptide ligands. The human genome encodes, in contrast to the mouse genome, for two cathepsin L proteases, namely cathepsin L (CTSL) and cathepsin V (CTSV; alternatively cathepsin L2). In the human thymic cortex, CTSV is the predominately expressed protease as compared to CTSL or other cysteine cathepsins. In order to analyze the functions of CTSL and CTSV in the positive selection of CD4+ T cells we employed Ctsl knock-out mice crossed either with transgenic mice expressing CTSL under the control of its genuine human promoter or with transgenic mice expressing CTSV under the control of the keratin 14 (K14) promoter, which drives expression to the cortical epithelium. Both human proteases are expressed in the thymus of the transgenic mice, and independent expression of both CTSL and CTSV rescues the reduced frequency of CD4+ T cells in Ctsl-deficient mice. Moreover, the expression of the human cathepsins does not change the number of CD4+CD25+Foxp3+ regulatory T cells, but the normalization of the frequency of conventional CD4+ T cell in the transgenic mice results in a rebalancing of conventional T cells and regulatory T cells. We conclude that the functional differences of CTSL and CTSV in vivo are not mainly determined by their inherent biochemical properties, but rather by their tissue specific expression pattern.  相似文献   

17.
The asparagine-specific endoprotease (AEP) controls lysosomal processing of the potential autoantigen myelin basic protein (MBP) by human B lymphoblastoid cells, a feature implicated in the immunopathogenesis of multiple sclerosis. In this study, we demonstrate that freshly isolated human B lymphocytes lack significant AEP activity and that cleavage by AEP is dispensable for proteolytic processing of MBP in this type of cell. Instead, cathepsin (Cat) G, a serine protease that is not endogenously synthesized by B lymphocytes, is internalized from the plasma membrane and present in lysosomes from human B cells where it represents a major functional constituent of the proteolytic machinery. CatG initialized and dominated the destruction of intact MBP by B cell-derived lysosomal extracts, degrading the immunodominant MBP epitope and eliminating both its binding to MHC class II and a MBP-specific T cell response. Degradation of intact MBP by CatG was not restricted to a lysosomal environment, but was also performed by soluble CatG. Thus, the abundant protease CatG might participate in eliminating the immunodominant determinant of MBP. Internalization of exogenous CatG represents a novel mechanism of professional APC to acquire functionally dominant proteolytic activity that complements the panel of endogenous lysosomal enzymes.  相似文献   

18.
19.
In dendritic cells (DCs) cysteine cathepsins play a key role in antigen processing, invariant chain (Ii) cleavage and regulation of cell adhesion after maturation stimuli. Cystatin F, a cysteine protease inhibitor, is present in DCs in endosomal/lysosomal vesicles and thus has a potential to modulate cathepsin activity. In immature DCs cystatin F colocalizes with cathepsin S. After induction of DC maturation however, it is translocated into lysosomes and colocalizes with cathepsin L. The inhibitory potential of cystatin F depends on the properties of the monomer. We showed that the full-length monomeric cystatin F was a 12-fold stronger inhibitor of cathepsin S than the N-terminally processed cystatin F, whereas no significant difference in inhibition was observed for cathepsins L, H and X. Therefore, the role of cystatin F in regulating the main cathepsin S function in DCs, i.e. the processing of Ii, may depend on the form of the monomer present in endosomal/lysosomal vesicles. On the other hand, intact and truncated monomeric cystatin F are both potent inhibitors of cathepsin L and it is likely that cystatin F could regulate its activity in maturing, adherent DCs, controlling the processing of procathepsin X, which promotes cell adhesion via activation of Mac-1 (CD11b/CD18) integrin receptor.  相似文献   

20.
Antigen presentation by HLA class I (HLA-I) and HLA class II (HLA-II) complexes is achieved by proteins that are specific for their respective processing pathway. The invariant chain (Ii)-derived peptide CLIP is required for HLA-II-mediated antigen presentation by stabilizing HLA-II molecules before antigen loading through transient and promiscuous binding to different HLA-II peptide grooves. Here, we demonstrate alternative binding of CLIP to surface HLA-I molecules on leukemic cells. In HLA-II-negative AML cells, we found plasma membrane display of the CLIP peptide. Silencing Ii in AML cells resulted in reduced HLA-I cell surface display, which indicated a direct role of CLIP in the HLA-I antigen presentation pathway. In HLA-I-specific peptide eluates from B-LCLs, five Ii-derived peptides were identified, of which two were from the CLIP region. In vitro peptide binding assays strikingly revealed that the eluted CLIP peptide RMATPLLMQALPM efficiently bound to four distinct HLA-I supertypes (-A2, -B7, -A3, -B40). Furthermore, shorter length variants of this CLIP peptide also bound to these four supertypes, although in silico algorithms only predicted binding to HLA-A2 or -B7. Immunization of HLA-A2 transgenic mice with these peptides did not induce CTL responses. Together these data show a remarkable promiscuity of CLIP for binding to a wide variety of HLA-I molecules. The found participation of CLIP in the HLA-I antigen presentation pathway could reflect an aberrant mechanism in leukemic cells, but might also lead to elucidation of novel processing pathways or immune escape mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号