首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pistachio is a popular snack food. Aflatoxin contamination of pistachio nuts is a serious problem for many producing countries. The development of biological control methods based on ecological parameters is an environmentally friendly approach. Thirty-eight Aspergillus flavus isolates collected from a pistachio orchard in California (CA) were analyzed for production of aflatoxin (AF), cyclopiazonic acid (CPA), vegetative compatibility groups (VCGs), and mating types. All aflatoxigenic isolates produced both AFB1 and CPA. The most toxigenic one was CA28 which produced 164 μg AFB1 per 5 ml PDA fungal culture and small sclerotia (S strain, sclertoium size less than 400 μm). The other aflatoxigenic strains produce AFB1 ranging from 1.2 μg to 80 μg per 5 ml fungal culture. Twenty-one percent of the CA isolates produced AFB1, 84% produced CPA and half formed sclerotia on at least one of three tested media. The 38 CA isolates formed 26 VCGs, 6 of which had two or more isolates and 20 contained single isolates. The S strain isolates belong to 4 different VCGs. Genomic profiling by a retrotransposon DNA probe revealed fingerprint patterns that were highly polymorphic. The predicted VCGs (Pred-VCGs) based on a similarity coefficient >80% matched the VCGs of multiple isolates determined by complementation. All isolates within a VCG had the same mating-type gene of either MAT1-1 or MAT1-2. Uncorrected and VCG-corrected MAT1-1 and MAT1-2 among the isolates were equally distributed.  相似文献   

2.
The growth of a toxigenic strain (Saktiman 3Nst) of Aspergillus flavus decreased progressively with increasing concentration of essential oils from leaves of Cinnamomum camphora and rhizome of Alpinia galanga incorporated into SMKY liquid medium. The oils significantly arrested aflatoxin B1 elaboration by A. flavus. The oil of C. camphora completely checked aflatoxin B1 elaboration at 750 ppm (mg/L) while that of A. galanga showed complete inhibition at 500 ppm only. The oil combination of C. camphora and A. galanga showed more efficacy than the individual oils showing complete inhibition of AFB1 production even at 250 ppm.  相似文献   

3.
Various species of fungi in the genus Aspergillus are the most common causative agents of invasive aspergillosis and/or producers of hepato-carcinogenic mycotoxins. Salicylaldehyde (SA), a volatile natural compound, exhibited potent antifungal and anti-mycotoxigenic activities to A. flavus and A. parasiticus. By exposure to the volatilized SA, the growth of A. parasiticus was inhibited up to 10–75% at 9.5 mM ≤ SA ≤ 16.0 mM, while complete growth inhibition was achieved at 19.0 mM ≤ SA. Similar trends were also observed with A. flavus. The aflatoxin production, i.e., aflatoxin B1 and B2 (AFB1, AFB2) for A. flavus and AFB1, AFB2, AFG1, and AFG2 for A. parasiticus, in the SA-treated (9.5 mM) fungi was reduced by ~13–45% compared with the untreated control. Using gene deletion mutants of the model yeast Saccharomyces cerevisiae, we identified the fungal antioxidation system as the molecular target of SA, where sod1Δ [cytosolic superoxide dismutase (SOD)], sod2Δ (mitochondrial SOD), and glr1Δ (glutathione reductase) mutants showed increased sensitivity to this compound. Also sensitive was the gene deletion mutant, vph2Δ, for the vacuolar ATPase assembly protein, suggesting vacuolar detoxification plays an important role for fungal tolerance to SA. In chemosensitization experiments, co-application of SA with either antimycin A or strobilurin (inhibitors of mitochondrial respiration) resulted in complete growth inhibition of Aspergillus at much lower dose treatment of either agent, alone. Therefore, SA can enhance antifungal activity of commercial antifungal agents required to achieve effective control. SA is a potent antifungal and anti-aflatoxigenic volatile that may have some practical application as a fumigant.  相似文献   

4.
Essential oils extracted from Citrus reticulata and Cymbopogon citratus were tested in vitro against the toxigenic strain of Aspergillus flavus, isolated from the tuberous roots of Asparagus racemosus, used in preparation of herbal drugs. The essential oils completely inhibited the growth of A. flavus at 750 ppm and also exhibited a broad fungitoxic spectrum against nine additional fungi isolated from the roots. Citrus reticulata and Cymbopogon citratus essential oils completely inhibited aflatoxin B1 production at 750 and 500 ppm, respectively. During in vivo investigation, the incidence of fungi and aflatoxin B1 production decreased considerably in essential oil-treated root samples. The findings thus indicate possible exploitation of the essential oils as effective inhibitor of aflatoxin B1 production and as post-harvest fungitoxicant of traditionally used plant origin for the control of storage fungi. These essential oils may be recommended as plant-based antifungals as well as aflatoxin B1 suppressors in post-harvest processing of herbal samples.  相似文献   

5.
The aim of the present work was to investigate the production of aflatoxin byAspergillus parasiticus and to find out the possible ways to control it. Of 40 food samples collected from Abha region, Saudi Arabia, only 25% were contaminated with aflatoxins. Oil-rich commodities had the highly contaminated commodities by fungi and aflatoxins while spices were free from aflatoxins.Bacillus megatertum andB cereus were suitable for microbiological assay of aflatoxins. Czapek’s-Dox medium was found a suitable medium for isolation of fungi from food samples. The optimal pH for the growth ofA. parasiticus and its productivity of aflatoxin B1 was found at 6.0, while the best incubation conditions were found at 30°C for 10 days. D-glucose was the best carbon source for fungal growth, as well as aflatoxin production. Corn steep liquor, yeast extract and peptone were the best nitrogen sources for both fungal growth and toxin production (NH4)2HPO4 (1.55 gL-1) and NaNO2 (1.6 gL-1) reduced fungal growth and toxin production with 37.7% and 85%, respectively. Of ten amino acids tested, asparagine was the best for aflatoxin B1 production. Zn2+ and Co2+ supported significantly both fungal growth, as well as, aflatoxin B1 production at the different tested concentrations. Zn2+ was effective when added toA. parasiticus growth medium at the first two days of the culture age. The other tested metal ions expressed variable effects depending on the type of ion and its concentration. Water activity (aw) was an important factor controlling the growth ofA. parasiticus and toxin production. The minimum aw for the fungal growth was 0.8 on both coffee beans and rice grains, while aw of 0.70 caused complete inhibition for the growth and aflatoxin B1 production. H2O2 is a potent inhibitor for growth ofA. parasiticus and its productivity of toxins. NaHCO3 and C6H5COONa converted aflatoxin B1 to water-soluble form which returned to aflatoxin B1 by acidity. Black pepper, ciliated heath, cuminum and curcuma were the most inhibitory spices on toxin production. Glutathione, quinine, EDTA, sodium azide, indole acetic acid, 2,4-dichlorophenoxy acetic acid, phenol and catechol were inhibitory for both growth, as well as, aflatoxin B1 production. Stearic acid supported the fungal growth and decreased the productivity of AFB1 gradually. Lauric acid is the most suppressive fatty acid for both fungal growth and aflatoxin production, but oleic acid was the most potent supporter. Vitamin A supported the growth but inhibited aflatoxin B1 production. Vitamins C and D2 were also repressive particularly for aflatoxin production The present study included studying the activities of some enzymes in relation to aflatoxin production during 20-days ofA. parasiticus age in 2-days intervals. Glycolytic enzymes and pyruvate-generating enzymes seems to be linked with aflatoxin B1 production. Also, pentose-phosphate pathway enzymes may provide NADPH for aflatoxin B1 synthesis. The decreased activities of TCA cycle enzymes particularly from 4th day of growth up to 10th day were associated with the increase of aflatoxin B1 production. All the tested enzymes as well as aflatoxin B1 production were inhibited by either catechol or phenol.  相似文献   

6.
Aflatoxins are carcinogenic, teratogenic and immunosuppressive secondary metabolites produced by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin contamination of peanut is one of the most important constraints to peanut production worldwide. In order to develop an eco-friendly method of prevention of A. flavus infection and aflatoxin contamination in peanut, aqueous extracts obtained from leaves of 30 medicinal plants belonging to different families were evaluated for their ability to inhibit the growth of A. flavus in vitro. Among them the leaf extract of zimmu (Allium sativum L. × Allium cepa L.) was the only one that showed antifungal activity against A. flavus and recorded 73% inhibition of A. flavus growth. The antifungal activity of the zimmu extract was significantly decreased upon dialysis with a dialysis membrane having molecular cut off 12 kDa or autoclaving at 121°C for 20 min or boiling at 100°C for 10 min and recorded inhibition of 52, 16 and 21%, respectively. When A. flavus was grown in medium containing zimmu extract the production of aflatoxin B1 (AFB1) was completely inhibited even at a concentration of 0.5%. When AFB1 was incubated with zimmu extract a complete degradation of AFB1 was observed 5 days after incubation. When the roots of zimmu were incubated in water containing 70 ng of AFB1/ml, a reduction (by 58.5%) in AFB1 concentration was observed 5 days after incubation. A significant reduction in the population of A. flavus in the soil, kernel infection by A. flavus and aflatoxin contamination in kernels was observed when peanut was intercropped with zimmu. The population of the fungal antagonist, Trichoderma viride in the zimmu-intercropped field increased approximately twofold.  相似文献   

7.
Summary Eight species of bacteria were incubated in culture media containing 10 g/ml aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), or aflatoxin G2 (AFG2). Their culture density at 20°C was determined at four and eight days (d) after inoculation. In all species of bacteria studied (Bacillus cereus, Proteus mirabilis, Erysipylothrix rusiopathie (insidiosa), Streptococcus fecalis, Staphylococcus epidermis, Klebsiella pneumoniae, Micrococcus spp., andEscherichia coli), AFB1, AFB2 and AFG2 substantially decreased culture sizes at 4 d, but not at 8 d. InB. cereus andP. mirabilis, culture sizes were increased by AFB1, AFB2, and AFG2 at 8 d post inoculation. These results indicate that AFB1, AFB2, and AFG2 suppressed initial growth of these species in vitro, while later growth in some species was either unaltered or enhanced.  相似文献   

8.
Figs in an orchard were inoculated with an aflatoxigenicAspergillus flavus strain in two ways by spore injection or by dusting at three maturation stages: firm ripe, shrivelled, and dried. Fruits were individually examined for fungal development and analyzed for aflatoxin B1 (AF B1) after 2, 4, 6, 8 and 10 days. Fruit injected at the first stage showed fungal development and AF B1 contamination within two days. The toxin level increased sharply to 1 ppm after 10 days. The mean level of AF B1 (284.75 ng/g) was significantly higher than those observed in other conditions. Figs dusted at the first stage showed only a tiny fungal growth even after 10 days. AF B1 appeared after 6 days with a low frequency (35%), mean level (7.6 ng/g) and a great variation among figs (0.22–15 ng/g). Among fruits inoculated during the shrivelled fig and dried fruit stages, no fungal growth was observed and AF B1 was detected with a lower incidence in association with low mean levels (less than 1.25 ng/g). Methods of prevention of aflatoxin contamination at the critical step, the firm ripe stage, are discussed.  相似文献   

9.
Mycotoxin contamination of pistachios represents a serious food safety hazard. The aim of this study was to evaluate fungal contamination and aflatoxin (AF) and ochratoxin A (OTA) occurrence in pistachio sampled in Algeria and to study the mycotoxigenic capacities of the isolates. A total of 31 pistachio samples were collected from retail outlets from different regions of Algeria. The most frequently found fungi were Penicillium spp. (38%), Aspergillus section Nigri (30%) and A. flavus (22%). A total of 56.5% of A. flavus isolates were able to produce AFB1 and AFB2. No A. section Nigri uniseriate isolate was OTA producer, whereas OTA production capacity was detected in 33.3% of the A. section Nigri biseriate. At least one of the potentially ochratoxigenic species was found in 64.5% of samples. Despite the high number of pistachio samples containing AFs and OTA-producing isolates, only two samples contained AFs (always below the EU maximum tolerable level) and only one sample showed OTA contamination. This is the first report on the occurrence of toxigenic moulds and mycotoxins in pistachios from Algerian market.  相似文献   

10.
Fourteen barley and nine corn samples, destined for animal feed, collected from Golestan and Mazandaran provinces in the north of Islamic Republic of Iran (I. R. Iran) were analysed for aflatoxins (AF) and ochratoxin A (OA) by high performance liquid chromatography. In corn samples, aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) were detected in 8 (88.8%) and 6 (66.6%) samples at a mean level of 15.83 and 2.99 ppb (median 1.72 and 1 ppb), respectively. None of the corn samples contained detectable amounts of aflatoxin G1 (AFG1) and aflatoxin G2 (AFG2). Only one of the AF-contaminated samples was co-contaminated with OA at a concentration of 0.35 ppb. This is the first report concerning natural occurrence of OA and co-occurrence with AF in corn samples of north of I. R. Iran.  相似文献   

11.
Groundnut is commonly consumed in its roasted form by many Nigerians. This study was therefore conducted to determine the levels of aflatoxin in roasted groundnut retailed in south‐western Nigeria with a view to assessing the fitness of the processed nut for human consumption. The effects of roasting and de‐coating as alternative methods for reducing the ‘aflatoxin scare’ in the nut were further assessed on aflatoxigenic fungal load and aflatoxin content of the nuts. Forty‐eight samples of retailed raw and roasted groundnut were collected and assessed by mycological and thin‐layer chromatographic analysis for changes in aflatoxigenic fungal population and aflatoxin concentration, respectively. Consequently, 480 isolates of the Aspergillus section Flavi group, A. flavus L strain (= 410), A. tamarii (= 56), A. parasiticus (= 7) and A. parvisclerotigenus (= 7), were recovered from all samples. Aflatoxigenic isolates of A. flavus L strain (58.8%) had a significantly (P < 0.05) higher incidence than the non‐aflatoxigenic isolates (41.2%). Aflatoxins were detected in 43 (89.6%) of the samples. Approximately 25% of all samples exceeded the 20 ng/g limit for aflatoxin B1 (AFB1) adopted by the National Agency for Food and Drug Administration and Control while 83 and 79% of all samples contained AFB1 and total aflatoxins above the European Union limits of 2 and 4 ng/g, respectively. Aflatoxin concentrations in the raw and coated samples were as much as five times higher than those in the roasted and de‐coated nuts, respectively. However, no significant difference was recorded between aflatoxin levels in the coated and de‐coated samples. This study has shown that roasting of groundnut and testa removal (de‐coating) are effective processing interventions that can significantly lower aflatoxin quantities in the kernels, thus making it fit for human consumption.  相似文献   

12.
The antimutagenic effects of methanolic extracts of peanut hulls (MEPH) were evaluated by the Ames test. MEPH inhibited the mutagenicity of 4-nitroquinoline-N-oxide (NQNO), a direct-acting mutagen. MEPH also inhibited the mutagenicity of some indirect-acting mutagens and decreased in the order of 2-amino-3-methylimidazo(4,5-f)quinoline (IQ)>aflatoxin B1 (AFB1)>2-amino-6-methyldipyrido(1,2-a : 3′, 2′-d)imidazole (Glu-P-1) > 3-amino-1,4-dimethyl-5H-pyridol(4,3-b)indole (Trp-P-1) > benzo(a)pyrene (B(a)P) for 5. typhimurium TA98, and IQ > Trp-P-1 > Glu-P-1 > AFB1 > B(a)P for S. typhimurium TA100.  相似文献   

13.
The immunostimulant β-1,3 glucan was fed at 0·1% in feed for 7 days to healthy and aflatoxin B1(AFB1)-induced immunocompromised fish, Labeo rohita (one of the major tropical carp species), in a 60 day trial. The effects of AFB1, glucan and their interactions on non-specific and specific immunity levels and disease resistance of fish were studied. A single intraperitoneal injection of AFB1at 1·25 mg kg−1body weight) caused a significant (P< 0·05) reduction in non-specific immunity as measured through neutrophil phagocytic indices, serum bactericidal activity, and specific immunity as measured through bacterial agglutination titre against Edwardsiella tarda, as well as reduced protection against Aeromonas hydrophila challenge in comparison to control fish which were exposed neither to aflatoxin nor to glucan. Feeding of glucan to healthy fish raised the non-specific and specific immunity level and protection against bacterial infection compared with the control. Feeding of glucan to AFB1-induced immunocompromised fish for 7 days significantly raised the degree of resistance against A. hydrophila challenge and the non-specific immunity level in comparison to non-treated AFB1exposed fish. Although feeding of glucan was able to increase specific immunity, al measured through haemagglutination titre against sheep red blood cells, and bacterial (E. tarda) agglutination titre in healthy fish in comparison to all other groups, no significant increase in specific immunity to the aflatoxin-exposed group was seen.  相似文献   

14.
In Sri Lanka, rice is the main staple which is mostly processed into parboiled rice. The levels of aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1) in parboiled and raw milled rice collected from major rice producing areas and rice consuming townships were estimated. In almost all the samples of parboiled rice examined, the AFB1 and AFG1 contents were significantly higher than in raw milled rice. The highest AFB1 content was 185 µg/kg and AFG1 content 963 g/kg. These samples were collected from a major rice producing/milling district where the mean relative humidity is 78% and mean annual temperature 27 °C which is the highest amongst the rice growing areas in Sri Lanka. Raw rice was either free of aflatoxins or when toxins were detected, they occurred in less than 10% of the samples. The frequency of occurrence of surface fungal flora (Aspergillus/Penicillium) and aflatoxin content in market samples was closely related. Brownish or greenish moldy rice samples with fermented odour contained over 1000 g/kg of AFB1.  相似文献   

15.
The immunosuppressive potential of aflatoxin B1 (AFB1), the carcinogenic metabolite ofAspergillus flavus, was evaluated in growing rats. The weanling rats were subchronically exposed to 60, 300 and 600 µg AFB1/kg body weight for four weeks on alternate days by oral feeding. Various parameters of cell mediated immunity (CMI) and humoral immunity were assessed in control and treated animals. CMI was evaluated by measuring delayed type of hypersensitivity (DTH) response and humoral by plaque forming cell (PFC) assay. The lymphoproliferative response assay for T- and B-cells was also performed. It was observed that AFB1 selectively suppressed cell mediated immunity in growing rats. AFB1 suppressed CMI at the 300 and 600 µg dose levels only as measured by DTH response assay. It is concluded that continuous low level exposure of aflatoxin to growing host may enhance its susceptibility to infection and tumorigenesis.Abbreviations AF Aflatoxin - AFB1 Aflatoxin B1 - CMI Cell mediated immunity - CPM Counts per minute - DTH Delayed type of hypersensitivity - GST Glutathione-S-transferase - LPS Lipopolysaccharide - PFC Plaque forming cell - PHA Phytohemagglutinin - SRBC Sheep red blood cells  相似文献   

16.
Aims: To study the interaction between Bacillus spp. and contaminating Aspergillus flavus isolated strains from Thai fermented soybean in order to limit aflatoxin production. To study the detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by Bacillus spp. in order to find an efficient strain to remove these toxins. Methods and Results: One A. flavus aflatoxin-producing strain and 23 isolates of Bacillus spp. were isolated from soybean and fresh Thua-nao collected from the north of Thailand. Inhibition studies of A. flavus and A. westerdijkiae NRRL 3174 (reference strain) growth by all isolates of Bacillus spp. were conducted by dual culture technique on agar plates. These isolates were also tested for AFB1 and OTA detoxification ability on both solid and liquid media. Most of the strains were able to detoxify aflatoxin but only some of them could detoxify OTA. Conclusions: One Bacillus strain was able to inhibit growth of both Aspergillus strains and to remove both mycotoxins (decrease of 74% of AFB1 and 92·5% of OTA). It was identified by ITS sequencing as Bacillus licheniformis. The OTA decrease was due to degradation in OTα. Another Bacillus strain inhibiting both Aspergillus growth and detoxifying 85% of AFB1 was identified as B. subtilis. AFB1 decrease has not been correlated to appearance of a degradation product. Significance and Impact of the Study: The possibility to reduce AFB1 level by a strain from the natural flora is of great interest for the control of the quality of fermented soybean. Moreover, the same strain could be a source of efficient enzyme for OTA degradation in other food or feeds.  相似文献   

17.
Antimutagenic activity of aqueous extracts of the South African herbal teas, Aspalathus linearis (rooibos) and Cyclopia spp. (honeybush) was compared with that of Camellia sinensis (black, oolong and green) teas in the Salmonella mutagenicity assay using aflatoxin B1 (AFB1) and 2-acetylaminofluorene (2-AAF) as mutagens. The present study presents the first investigation on antimutagenic properties of C. subternata, C. genistoides and C. sessiliflora. The herbal teas demonstrated protection against both mutagens in the presence of metabolic activation, with the exception of “unfermented” (green/unoxidised) C. genistoides against 2-AAF, which either protected or enhanced mutagenesis depending on the concentration. Antimutagenic activity of “fermented” (oxidised) rooibos was significantly (P < 0.05) less than that of Camellia sinensis teas against AFB1, while for 2-AAF it was less (P < 0.05) than that of black tea and similar (P > 0.05) to that of oolong and green teas. Antimutagenic activity of unfermented C. intermedia and C. subternata exhibited a similar protection as fermented rooibos against AFB1. Against 2-AAF, fermented rooibos exhibited similar protective properties than unfermented C. intermedia and C. sessiliflora. Unfermented rooibos was less effective than the C. sinensis teas and fermented rooibos, but had similar (P > 0.05) antimutagenicity to that of fermented C. sessiliflora against AFB1 and fermented C. subternata against 2-AAF. Fermented C. intermedia and C. genistoides exhibited the lowest protective effect against 2-AAF, while fermented C. intermedia exhibited the lowest protection when utilising AFB1 as mutagen. Aspalathin and mangiferin, major polyphenols in rooibos and Cyclopia spp., respectively, exhibited weak to moderate protective effects when compared to the major green tea catechin, (−)epigallocatechin gallate (EGCG). Antimutagenic activity of selected herbal tea phenolic compounds indicated that they contribute towards (i) observed antimutagenic activity of the aqueous extracts against both mutagens and (ii) enhancement of the mutagenicity of 2-AAF by unfermented C. genistoides. Antimutagenic activity of the South African herbal teas was mutagen-specific, affected by fermentation and plant material, presumably due to changes and variation in phenolic composition.  相似文献   

18.
Deterioration of raw materials of six medicinal plants viz. Terminalia arjuna, Acorus calamus, Rauvolfia serpentina, Holarrhena antidysenterica, Withania somnifera and Boerhaavia diffusa was examined. Some of the contaminated raw materials were found to be deteriorated by toxigenic strains of Aspergillus flavus and contain aflatoxin B1 (41.0–95.4 μg kg−1) which is above the permissible limit. Essential oil of Cymbopogon flexuosus and its components was found efficient in checking fungal growth and aflatoxin production. C. flexuosus essential oil absolutely inhibited the growth of A. flavus and aflatoxin B1 production at 1.3 μl ml−1 and 1.0 μl ml−1 respectively. The individual oil components were more efficacious than the Cymbopogon oil as such which emphasizes masking of their efficacy when combined together. Eugenol exhibited potent antifungal and aflatoxin inhibitory activity at 0.3 μl ml−1 and 0.1 μl ml−1 respectively. Eugenol was found superior over some prevalent synthetic antimicrobials and exhibited broad fungitoxic spectrum against some biodeteriorating moulds. Prospects of exploitation of the oil and its components as acceptable plant based antimicrobials in qualitative as well as quantitative control of biodeterioration of herbal raw materials have been discussed.  相似文献   

19.
Transformation of sterigmatocystin and O-methylsterigmatocystin (two metabolic aflatoxin precursors) to aflatoxins by aflatoxigenic and nonaflatoxigenic field isolates of Aspergillus flavus was studied. The 24 nonaflatoxigenic isolates investigated failed to transform both precursors. Among the 8 aflatoxin-producing isolates used, 7 transformed both precursors whereas the remaining failed to transform both. According to these results, the usefulness of the measurement of enzymatic activities related to aflatoxin production in understanding the true status of conflictive field isolates is discussed.Abbreviations ST sterigmatocystin - OMST O-methylsterigmatocystin - AFB1 aflatoxin B1 - AFB2 aflatoxin B2 - AFG1 aflatoxin G1 - AFG2 aflatoxin G2 - GM growth medium of Adye and Mateles - RM replacement medium of Adye and Mateles  相似文献   

20.
Abstract

The study recommends the Artemisia nilagirica (Clarke) Pamp. essential oil (ANEO) as plant-based shelf-life enhancer of millets against fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation with favourable safety profile. Chemical characterisation of ANEO through GC-MS, recorded 1,5-heptadiene-4-one,3,3,6-trimethyl (32.72%)as the main compound, followed by Artemisia alcohol (13.40%), alpha lonone (4.55%), benzene, methyl (1-methylethyl) (2.97%) and 1-cyclohexene-1-carboxaldehyde,4-(1-methylethyenyl) (2.23%). The mycoflora analysis of millet samples showed Aspergillus flavus strain[LHP(R)-5] as the most AFB1 secreting strain. The ANEO inhibited growth and AFB1 production by the toxigenic strain at 1.4 and 1.0?µL?mL?1, respectively, and also possess broad fungitoxic spectrum. The decrement in membrane ergosterol content, enhanced leakage of cellular Ca2+, K+ and Mg2+ ions along with SEM and TEM study of ANEO-treated cell denotes plasma membrane as antifungal site of action. The ANEO also showed strong antioxidant activity as determined by DPPH? and ABTS?+ assays having IC50 value 2.51 and 1.07?µL?mL?1, respectively. More than 70.78% protection of Ragi samples from fungal contamination was observed during in situ trial. The ANEO showed favourable safety profile with high LD50 value (7528.10?µL?kg?1) for male mice and also exhibited non-phytotoxicity for Ragi seeds germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号