首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioprocess and Biosystems Engineering - The current work is an attempt to study the strategies for cartilage tissue regeneration using porous scaffold in wavy walled airlift bioreactor (ALBR)....  相似文献   

2.
Some treatments for full thickness defects of articular cartilage, such as cultured chondrocyte transplantation, have already been done. However, to overcome osteoarthritis, we must further study the partial thickness defect of articular cartilage. It is much more difficult to repair a partial thickness defect because few repairing cells can address such injured sites. We herein show that bioengineered layered chondrocyte sheets using temperature-responsive culture dishes may be a potentially useful treatment for partial thickness defects. We evaluated the property of these sheets using real-time PCR and histological findings, and allografted these sheets to evaluate the effect of treatment using a rabbit partial model. In conclusion, layered chondrocyte sheets were able to maintain the cartilageous phenotype, and could be attached to the sites of cartilage damage which acted as a barrier to prevent a loss of proteoglycan from these sites and to protect them from catabolic factors in the joint.  相似文献   

3.
Natural polymers offer various advantages in cartilage tissue engineering applications, thanks to their intrinsic bioactivity and adaptability, which can be exploited for the optimization of scaffold properties. In particular, silk fibroin has multifunctional features driven by the self-assembly of molecular subunits in appropriate environmental conditions. For these reasons, it was used in combination with hyaluronic acid to produce porous sponges for cartilage regeneration. The added amount of hyaluronic acid and the cross-linking with genipin modulated scaffold properties in a synergistic way, showing a strong inter-correlation among macroscopic and microscopic characteristics. Interestingly, hyaluronic acid affected silk fibroin conformation and induced a physical separation between the two material components in absence of genipin. Instead, this was prevented by the cross-linking reaction, resulting in a more interspersed network of protein and polysaccharide molecules partially resembling the structure of cartilage extracellular matrix. In addition, the systematic evaluation of sponge properties and how they can be modulated will represent a significant starting point for the interpretation of the complex outcomes driven by the scaffold in vitro and in vivo.  相似文献   

4.
Alginate hydrogel is an attractive biomaterial for cell microencapsulation. The microarchitecture of hydrogels can regulate cellular functions. This study aims to investigate the applicability of sodium citrate buffer (SCB) as a culture medium supplement for modulating the microstructure of alginate microbeads to provide a favorable microenvironment for chondrogenic induction. The chondrocyte-laden microbeads, with and without TGF-β3 incorporation, were produced through an encapsulator. The obtained small-sized microbeads (~300 μm) were exposed to a treatment medium containing SCB, composed of varied concentrations of sodium citrate (1.10–1.57 mM), sodium chloride (3.00–4.29 mM), and ethylenediaminetetraacetic acid (0.60–0.86 mM) to partially degrade their crosslinked structure for 3 days, followed by culture in a normal medium until day 21. Scanning electron microscope micrographs demonstrated a loose hydrogel network with an enhanced pore size in the SCB-treated microbeads. Increasing the concentration of SCB in the treatment medium reduced the calcium content of the microbeads via a Na+/Ca2+ exchange process and improved the water absorption of the microbeads, resulting in a higher swelling ratio. All the tested SCB concentrations were non-cytotoxic. Increases in aggrecan and type II collagen gene expression and their corresponding extracellular matrix accumulation, glycosaminoglycans, and type II collagen were vividly detected in the TGF-β3-containing microbeads with increasing SCB concentrations in the treatment medium. Our findings highlighted that the combination of SCB treatment and TGF-β3 incorporation in the chondrocyte-laden microbeads is a promising strategy for enhancing cartilage regeneration, which may contribute to a versatile application in cell delivery and tissue engineering.  相似文献   

5.
Present perspectives on cartilage and chondrocyte mechanobiology   总被引:2,自引:0,他引:2  
Urban JP 《Biorheology》2000,37(1-2):185-190
The focus of work on mechanotransduction in cartilage has changed markedly over the last 10 years. At the beginning of the decade, the interest lay in determining the net response of cartilage plugs, almost always as 35S-sulphate or 3H-proline incorporation, to a variety of external loads, with the focus on whether changes in frequency in particular would stimulate or inhibit proteoglycan and protein synthesis [9,21]. Over the past few years the emphasis has shifted; it is now based mainly at the level of the cell as illustrated in Fig. 1. Here we will present a brief overview of the work presented at this symposium in light of these changes in approach.  相似文献   

6.
Lammi MJ 《Biorheology》2004,41(3-4):593-596
It is well known that physiological forces are essential for the maintenance of normal composition and structure of articular cartilage. Although some of the mechanisms of mechanotransduction are known today, there are certainly many others left unrevealed. In order to understand the complicated systems present in articular cartilage, we have to bring together the data from all fields of cartilage mechanobiology. The 3rd Symposium on Mechanobiology of Cartilage and Chondrocyte was a good effort towards that goal.  相似文献   

7.
Injectable tissue-engineered cartilage with different chondrocyte sources   总被引:7,自引:0,他引:7  
Injectable engineered cartilage that maintains a predictable shape and volume would allow recontouring of craniomaxillofacial irregularities with minimally invasive techniques. This study investigated how chondrocytes from different cartilage sources, encapsulated in fibrin polymer, affected construct mass and volume with time. Swine auricular, costal, and articular chondrocytes were isolated and mixed with fibrin polymer (cell concentration of 40 x 10 cells/ml for all groups). Eight samples (1 cm x 1 cm x 0.3 cm) per group were implanted into nude mice for each time period (4, 8, and 12 weeks). The dimensions and mass of each specimen were recorded before implantation and after explantation. Ratios comparing final measurements and original measurements were calculated. Histological, biochemical, and biomechanical analyses were performed. Histological evaluations (n = 3) indicated that new cartilaginous matrix was synthesized by the transplanted chondrocytes in all experimental groups. At 12 weeks, the ratios of dimension and mass (n = 8) for auricular chondrocyte constructs increased by 20 to 30 percent, the ratios for costal chondrocyte constructs were equal to the initial values, and the ratios for articular chondrocyte constructs decreased by 40 to 50 percent. Constructs made with auricular chondrocytes had the highest modulus (n = 3 to 5) and glycosaminoglycan content (n = 4 or 5) and the lowest permeability value (n = 3 to 5) and water content (n = 4 or 5). Constructs made with articular chondrocytes had the lowest modulus and glycosaminoglycan content and the highest permeability value and water content (p < 0.05). The amounts of hydroxyproline (n = 5) and DNA (n = 5) were not significantly different among the experimental groups (p > 0.05). It was possible to engineer injectable cartilage with chondrocytes from different sources, resulting in neocartilage with different properties. Although cartilage made with articular chondrocytes shrank and cartilage made with auricular chondrocytes overgrew, the injectable tissue-engineered cartilage made with costal chondrocytes was stable during the time periods studied. Furthermore, the biomechanical properties of the engineered cartilage made with auricular or costal chondrocytes were superior to those of cartilage made with articular chondrocytes, in this model.  相似文献   

8.
The use of autologous chondrocyte implantation (ACI) and its further development combining autologous chondrocytes with bioresorbable matrices may represent a promising new technology for cartilage regeneration in orthopaedic research. Aim of our study was to evaluate the applicability of a resorbable three-dimensional polymer of pure polyglycolic acid (PGA) for the use in human cartilage tissue engineering under autologous conditions. Adult human chondrocytes were expanded in vitro using human serum and were rearranged three-dimensionally in human fibrin and PGA. The capacity of dedifferentiated chondrocytes to re-differentiate was evaluated after two weeks of tissue culture in vitro and after subcutaneous transplantation into nude mice by propidium iodide/fluorescein diacetate (PI/FDA) staining, scanning electron microscopy (SEM), gene expression analysis of typical chondrocyte marker genes and histological staining of proteoglycans and type II collagen. PI/FDA staining and SEM documented that vital human chondrocytes are evenly distributed within the polymer-based cartilage tissue engineering graft. The induction of the typical chondrocyte marker genes including cartilage oligomeric matrix protein (COMP) and cartilage link protein after two weeks of tissue culture indicates the initiation of chondrocyte re-differentiation by three-dimensional assembly in fibrin and PGA. Histological analysis of human cartilage tissue engineering grafts after 6 weeks of subcutaneous transplantation demonstrates the development of the graft towards hyaline cartilage with formation of a cartilaginous matrix comprising type II collagen and proteoglycan. These results suggest that human polymer-based cartilage tissue engineering grafts made of human chondrocytes, human fibrin and PGA are clinically suited for the regeneration of articular cartilage defects.  相似文献   

9.
A method for determining DNA and chondrocyte content of articular cartilage   总被引:1,自引:0,他引:1  
A novel and precise method was devised to study the DNA and chondrocyte content of articular cartilage. It involved the sequential digestion of cartilage matrix with hyaluronidase, trypsin, and collagenase to release the chondrocytes. A direct cell count and DNA assays were then performed on the cells. The concentration of cells was the quotient of the total number of cells and the weight of cartilage used. The DNA content of cartilage is identical to the amount of DNA in the chondrocytes. Our data also confirmed the earlier findings that cell density and DNA content of articular cartilage decreased gradually to a relatively constant level as animals matured to adulthood.  相似文献   

10.
The pericellular matrix (PCM) is a narrow region of cartilaginous tissue that surrounds chondrocytes in articular cartilage. Previous modeling studies indicate that the mechanical properties of the PCM relative to those of the extracellular matrix (ECM) can significantly affect the stress-strain, fluid flow, and physicochemical environments of the chondrocyte, suggesting that the PCM plays a biomechanical role in articular cartilage. The goals of this study were to measure the mechanical properties of the PCM using micropipette aspiration coupled with a linear biphasic finite element model, and to determine the alterations in the mechanical properties of the PCM with osteoarthritis (OA). Using a recently developed isolation technique, chondrons (the chondrocyte and its PCM) were mechanically extracted from non-degenerate and osteoarthritic human cartilage. The transient mechanical behavior of the PCM was well-described by a biphasic model, suggesting that the viscoelastic response of the PCM is attributable to flow-dependent effects, similar to that of the ECM. With OA, the mean Young's modulus of the PCM was significantly decreased (38.7+/-16.2 kPa vs. 23.5+/-12.9 kPa, p < 0.001), and the permeability was significantly elevated (4.19+/-3.78 x10(-17) m(4)/Ns vs. 10.2+/-9.38 x 10(-17) m(4)/Ns, p < 0.01). The Poisson's ratio was similar for both non-degenerate and OA PCM (0.044+/-0.063 vs. 0.030+/-0.068, p > 0.6). These findings suggest that the PCM may undergo degenerative processes with OA, similar to those occurring in the ECM. In combination with previous theoretical models of cell-matrix interactions in cartilage, our findings suggest that changes in the properties of the PCM with OA may have an important influence on the biomechanical environment of the chondrocyte.  相似文献   

11.
12.
Materials that enhance bone and cartilage regeneration promise to be valuable in both research and clinical applications. Both natural and synthetic polymers can be used to create scaffolds that support cells and incorporate cues which guide tissue repair. Recently, electrospinning, peptide self-assembly and biomineralisation have been employed to fabricate nanostructured scaffolds that better mimic the complex extracellular environment found within tissues, in vivo. The incorporation of peptide motifs recognised by cell receptors and the use of recombinant DNA technology have enabled the creation of scaffolds with new levels of biofunctionality. Advances in materials design will enhance our ability to create highly tailored cellular environments for bone and cartilage regeneration.  相似文献   

13.
Work relating the mechanical states of articular cartilage chondrocytes to their biosynthetic responses is based on measurements in isolated cells or cells in explant samples removed from their natural in situ environment. Neither the mechanics nor the associated biological responses of chondrocytes have ever been studied in cartilage within a joint of a live animal, and no such measurements have ever been performed using physiologically relevant joint loading through muscular contractions. The purpose of this study was to design and apply a method to study the mechanics of chondrocytes in the exposed but fully intact knee of live animals, which was loaded near-physiologically through muscular contraction. In order to achieve this purpose, we developed an accurate and reliable method based on two-photon laser excitation microscopy. Near-physiological knee joint loading was achieved through controlled electrical activation of the knee extensor muscles that compress the articulating surfaces of the femur, tibia and patella. Accuracy of the system was assessed by inserting micro-beads of known dimensions into the articular cartilage of the mouse knee and comparing the measured volumes and diameters in the principal directions with known values of the beads. Accuracy was best in the plane perpendicular to the optical axis (average error = 1%) while it was slightly worse, but still excellent, along the optical axis (average error = 3%). Reliability of cell volume and shape measurements was 0.5% on average, and 2.9% in the worst-case-scenario. Pilot measurements of chondrocyte deformations upon sub-maximal muscular loading causing a mean articular contact pressure of 1.9 ± 0.2 MPa showed an "instantaneous" decrease in cell height (17 ± 4.5%) and loss of cell volume (22.3 ± 2.4%) that took minutes to recover upon deactivation of the knee extensor muscles.  相似文献   

14.
In a chronically hypoxic tissue such as cartilage, adaptations to hypoxia do not merely include cell survival responses, but also promotion of its specific function. This review will focus on describing such hypoxia-mediated chondrocyte function, in particular in the permanent articular cartilage. The molecular details of how chondrocytes sense and respond to hypoxia and how this promotes matrix synthesis have recently been examined, and specific manipulation of hypoxia-induced pathways is now considered to have potential therapeutic application to maintenance and repair of articular cartilage.  相似文献   

15.
Wnt influence on chondrocyte differentiation and cartilage function   总被引:1,自引:0,他引:1  
The Wnt signaling network regulates chondrocyte differentiation, proliferation, and maturation during embryonic limb development. In this review, we summarize studies of Wnt signaling during the chondrocyte life cycle in avian and mammalian systems, both before and after birth. Recent reports that implicate abnormal Wnt signaling as a contributing factor to pathogenic joint conditions are also discussed. In addition, we show new data that suggests Wnt signaling is active in adult cartilage. Overall, it appears that the Wnt network has dual roles in cartilage, as has been described in other tissues: it is an important regulator of chondrocyte development, but deregulated signaling is detrimental to mature tissues and may lead to disease.  相似文献   

16.
Nakahara T  Ide Y 《Human cell》2007,20(3):63-70
Experiments with animal models have shown that the tooth crown structure can be regenerated using tissue engineering techniques that combine tooth bud cells and biodegradable materials, or by using embryonic tissue and adult stem cells. Moreover, tooth roots and periodontal tissues have been reconstructed by grafting dental stem cells, which leads to the recovery of tooth function, suggesting that tooth regeneration will become possible in humans in the near future. The present article reviews current research on tooth regeneration, discusses a model of tooth replacement that could be used clinically, and proposes a new tooth regeneration approach that overcomes the difficulties associated with the tooth replacement model. Tooth regeneration is an important stepping stone in the establishment of engineered organ transplantation, which is one of the ultimate goals of regenerative therapies.  相似文献   

17.
Cartilage oligomeric matrix protein (COMP) is a large extracellular pentameric glycoprotein found in the territorial matrix surrounding chondrocytes. More than 60 unique COMP mutations have been identified as causing two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Recent studies demonstrate that calcium-binding and calcium induced protein folding differ between wild type and mutant COMP proteins and abnormal processing of the mutant COMP protein causes the characteristic large lamellar appearing rough endoplasimic reticulum (rER) cisternae phenotype observed in PSACH and EDMI growth plate chondrocytes. To understand the cellular events leading to this intracellular phenotype, PSACH chondrocytes with a G427E, D469del and D511Y mutations were grown in 3-D culture to produce cartilage nodules. Each nodule was assessed for the appearance and accumulation of cartilage-specific proteins within the rER and for matrix protein synthesis. All three COMP mutations were associated with accumulation of COMP in the rER cisternae by 4 weeks in culture, and by 8 weeks the majority of chondrocytes had the characteristic cellular phenotype. Mutations in COMP also affect the secretion of type IX collagen and matrilin-3 (MATN3) but not the secretion of aggrecan and type II collagen. COMP, type IX collagen and MATN3 were dramatically reduced in the PSACH matrices, and the distribution of these proteins in the matrix was diffuse. Ultrastructural analysis shows that the type II collagen present in the PSACH matrix does not form organized fibril bundles and, overall, the matrix is disorganized. The combined absence of COMP, type IX collagen and MATN3 causes dramatic changes in the matrix and suggests that these proteins play important roles in matrix assembly.  相似文献   

18.
This study presents a new innovative method where electrospinning is used to coat single microfibers with nanofibers. The nanofiber-coated microfibers can be formed into scaffolds with the combined benefits of tailored porosity for cellular infiltration and nanostructured surface morphology for cell growth. The nanofiber coating is obtained by using a grounded collector rotating around the microfiber, to establish an electrical field yet allow collection of nanofibers on the microfiber. A Teflon tube surrounding the fibers and collector is used to force the nanofibers to the microfiber. Polycaprolactone nanofibers were electrospun onto polylactic acid microfibers and scaffolds of 95 and 97% porosities were made. Human chondrocytes were seeded on these scaffolds and on reference scaffolds of purely nanofibers and microfibers. Thereafter, cellular infiltration was investigated. The results indicated that scaffold porosity had great effects on cellular infiltration, with higher porosity resulting in increased infiltration, thereby confirming the advantage of the presented method.  相似文献   

19.
20.
Articular cartilage is classified as permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in the epiphyseal growth plate. In the process of synovial joint development, articular cartilage originates from the interzone, developing at the edge of the cartilaginous anlagen, and establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators, such as Wnts, GDF5, Erg, and PTHLH, coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracellular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier's groove, the intra‐articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Furthermore, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. Birth Defects Research (Part C) 99:192–202, 2013 . © 2013 Wiley Periodicals, Inc .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号