首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lin YR  Chen HH  Ko CH  Chan MH 《Life sciences》2007,81(13):1071-1078
The antinociceptive actions of honokiol and magnolol, two major bioactive constituents of the bark of Magnolia officinalis, were evaluated using tail-flick, hot-plate and formalin tests in mice. The effects of honokiol and magnolol on the formalin-induced c-Fos expression in the spinal cord dorsal horn as well as motor coordination and cognitive function were examined. Data showed that honokiol and magnolol did not produce analgesia in tail-flick, hot-plate paw-shaking and neurogenic phase of the overt nociception induced by intraplantar injection of formalin. However, honokiol and magnolol reduced the inflammatory phase of formalin-induced licking response. Consistently, honokiol and magnolol significantly decreased formalin-induced c-Fos protein expression in superficial (I-II) laminae of the L4-L5 lumbar dorsal horn. However, honokiol and magnolol did not elicit motor incoordination and memory dysfunction at doses higher than the analgesic dose. These results demonstrate that honokiol and magnolol effectively alleviate the formalin-induced inflammatory pain without motor and cognitive side effects, suggesting their therapeutic potential in the treatment of inflammatory pain.  相似文献   

3.
To control the fish fungal pathogen Saprolegnia, the effects of the petroleum ether extracts of Magnolia officinalis were evaluated by a rapeseed (Brassicanapus) microplate method in vitro. By loading on an open silica gel column and eluting with petroleum ether-ethyl acetate-methanol, honokiol (C18H18O2) and magnolol (C18H18O2) were isolated from Magnolia officinalis. Saprolegnia parasitica growth was inhibited significantly when honokiol concentration was >8.0?mg/L, and magnolol concentration was >9.0?mg/L, with EC50 values of 4.38 and 4.92?mg/L, respectively. Six honokiol and magnolol derivatives were designed, synthesized and evaluated for their anti-Saprolegnia activity. According to the results, double bond and hydroxyl played an important role in inhibiting Saprolegnia. Mechanistically, through the scanning electron microscope observation, honokiol and magnolol could cause the Saprolegnia parasitica mycelium tegumental damage including intensive wrinkles and nodular structures. Moreover, compared to traditional drugs kresoxim-methyl (LC50?=?0.66?mg/L) and azoxystrobin (LC50?=?2.71?mg/L), honokiol and magnolol showed a lower detrimental effect on zebrafish, with the LC50 values of 6.00 and 7.28?mg/L at 48?h, respectively. Overall, honokiol and magnolol were promising lead compounds for the development of commercial drugs anti-Saprolegnia.  相似文献   

4.
Six 1,2,4-oxadiazole derivatives were prepared in order to compare their abilities to protect DNA against radical-mediated oxidation and to scavenge radicals. These derivatives had a structure based on disubstituted 1,2,4-oxadiazole, in which a vanillin group (A ring) and a substituted benzene group (B ring) were the substituents. The functional group at B ring was assigned as ortho- or meta-hydroxylbenzene group, ortho-chlorobenzene group, no group contained, and pyridine group or vanillin group at B ring. It was found that the compound with two vanillin groups attaching to oxadiazole can trap 2.05 radicals in protecting DNA against 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation, and the compound with an ortho-hydroxylbenzene group at B ring can trap 1.78 radicals. The compound with an ortho-chlorobenzene group at B ring exhibited the highest ability to inhibit ·OH-induced oxidation of DNA, while the compound with a meta-hydroxylbenzene group at B ring inhibited Cu2+/glutathione (GSH)-induced oxidation of DNA efficiently. The ortho- and para-hydroxylbenzene groups at B ring made the compounds possess the highest rate constant (k) in scavenging 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+.) and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH). Therefore, only a few hydroxyl groups can markedly enhance the activity of the core-branched antioxidant, which may be a novel structural feature in designing antioxidant.  相似文献   

5.

Abstract  

The aim of this work was to clarify the effect of the position of the hydroxyl group on the antioxidant capacity of hydroxyferrocifen by means of a chemical kinetic method. Propionylferrocene and benzoylferrocene condensed with 4-hydroxydiphenylketone, 3,4-dihydroxydiphenylketone, and 4,4′-dihydroxydiphenylketone to form FP3, FP4, FB3, and FB4 with a single hydroxyl group and FP34, FP44, FB34, and FB44 with two hydroxyl groups. These hydroxyferrocifens were applied in Cu2+/glutathione (GSH)-induced, hydroxyl radical (·OH)-induced, and 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation of DNA, and in trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS). It was found that these hydroxyferrocifens acted as prooxidants in Cu2+/GSH-induced oxidation of DNA and exhibited very weak effects on ·OH-induced oxidation of DNA. FP3, FP4, FB3, and FB4 can only retard the rate of AAPH-induced oxidation of DNA, whereas FP44, FB44, FB34, and FP34 can trap 11.9, 7.1, 6.2, and 4.9 radicals, respectively, in AAPH-induced oxidation of DNA. The ability to trap ABTS followed the order FB4 > FP44 > FB34 > FB44 > FP34. It was concluded that two hydroxyl groups at the para position of two benzene rings rather than at the ortho position in the same benzene ring were beneficial for hydroxyferrocifen to increase the antioxidant capacity.  相似文献   

6.
The aim of the present study is to investigate the effect of ethanolamine plasmalogens on the oxidative stability of cholesterol-rich membranes by comparing it with that of diacyl glycerophosphoethanolamine, using bovine brain ethanolamine plasmalogen (BBEP) or egg yolk phosphatidylethanolamine (EYPE)-containing large unilamellar vesicles (LUVs) and the water-soluble radical initiator AAPH. Electron microscopic observation and particle size measurement visually demonstrated that ethanolamine plasmalogens protect cholesterol-rich phospholipid bilayers from oxidative collapse. Lipid analyses suggested that the effect of ethanolamine plasmalogens in stabilizing membranes against oxidation is partly due to the antioxidative action of plasmalogens involved in scavenging radicals at vinyl ether linkage.  相似文献   

7.
Biphenylic compounds related to the natural products magnolol and 4′-O-methylhonokiol were synthesized, evaluated and optimized as positive allosteric modulators (PAMs) of GABAA receptors. The most efficacious compounds were the magnolol analog 5-ethyl-5′-hexylbiphenyl-2,2′-diol (45) and the honokiol analogs 4′-methoxy-5-propylbiphenyl-2-ol (61), 5-butyl-4′-methoxybiphenyl-2-ol (62) and 5-hexyl-4′-methoxybiphenyl-2-ol (64), which showed a most powerful potentiation of GABA-induced currents (up to 20-fold at a GABA concentration of 3 μM). They were found not to interfere with the allosteric sites occupied by known allosteric modulators, such as benzodiazepines and N-arachidonoylglycerol. These new PAMs will be useful as pharmacological tools and may have therapeutic potential for mono-therapy, or in combination, for example, with GABAA receptor agonists.  相似文献   

8.
Reactions of oxyl radicals with DNA   总被引:28,自引:0,他引:28  
The importance of radical-induced damage to DNA is apparent from the ever-increasing number of publications in this area. This review focuses on the damage caused to DNA by reactive oxygen-centred radicals, however formed. These may be hydroxyl radicals, which arise either from the radiolysis of water by ionizing radiation (γ-rays or X-rays), or from a purely chemical source. Alternatively, metal-bound oxyl radicals (M–O·) are also active intermediates in DNA-cleaving reactions and may be formed from synthetic compounds or from natural products such as bleomycin (BLM). Chemical mechanisms leading to the observed degradation products are covered in detail. The biological effects of some of the DNA base lesions formed are touched upon, concentrating on the molecular mechanisms behind the initial events that lead to mutagenesis.  相似文献   

9.
Chalcones with or without a para-hydroxyl group were condensed with phenylhydrazine-related compounds to form 1,3,5-triphenyl-1H-pyrazole (TPP), 4-(1,5-diphenyl-1H-pyrazol-3-yl)phenol (APP), 4-(1,3-diphenyl-1H-pyrazol-5-yl)phenol (BPP), and 4-(3,5-diphenyl-1H-pyrazol-1-yl)phenol (CPP), in which the phenyl group formed a dendritic structure with pyrazole as the core. Thus, the aim of this work was to explore the antioxidant capacities of TPP, APP, BPP, and CPP in trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+?) and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and in inhibiting Cu2 +/glutathione (GSH)-, ?OH-, and 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation of DNA. TPP can react with ABTS+? and DPPH, indicating that the N atom in pyrazole possesses radical-scavenging ability. Moreover, APP, BPP, and CPP can trap 1.71, 1.81, and 1.58 radicals, respectively, in protecting DNA against AAPH-induced oxidation. Thus, the combination of pyrazole with a phenyl group exerted antioxidant ability although only one phenolic hydroxyl group was involved. However, these compounds showed weak protective effect against Cu2 +/GSH-induced oxidation of DNA and even a pro-oxidant effect on ?OH-induced oxidation of DNA.  相似文献   

10.
The abilities of dihydrolipoic acid (DHLA) to scavenge peroxynitrite (ONOO?), galvinoxyl radical, 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) cation radical (ABTS+?), and 2,2′‐diphenyl‐1‐picrylhydrazyl radical (DPPH) were higher than those of lipoic acid (LA). The effectiveness of DHLA to protect methyl linoleate against 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH)‐induced oxidation was about 2.2‐fold higher than that of LA, and DHLA can retard the autoxidation of linoleic acid (LH) in the β‐carotene‐bleaching test. DHLA can also trap ~0.6 radicals in AAPH‐induced oxidation of LH. Moreover, DHLA can scavenge ~2.0 radicals in AAPH‐induced oxidation of DNA and AAPH‐induced hemolysis of erythrocytes, whereas LA can scavenge ~1.5 radicals at the same experimental conditions. DHLA can protect erythrocytes against hemin‐induced hemolysis, but accelerate the degradation of DNA in the presence of Cu2+. Therefore, the antioxidant capacity of –SH in DHLA is higher than S‐S in LA. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:216–223, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20378  相似文献   

11.
The antioxidant properties of 1,2,3,4‐tetra‐hydrocarbazole, 6‐methoxy‐1,2,3,4‐tetrahydrocar‐bazole (MTC), 2,3‐dimethylindole, 5‐methoxy‐2,3‐dimethylindole, and indole were investigated in the case of hemolysis of human erythrocytes and oxidative damage of DNA induced by 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH), respectively. The aim of this work was to explore the influence of methoxy, methyl, and cyclohexyl substituents on the antioxidant activities of indole derivatives. These indole derivatives were able to protect erythrocytes and DNA in a concentration‐dependent manner. The alkyl‐substituted indole can protect erythrocytes and DNA against AAPH‐induced oxidation. Especially, the structural features of cyclohexyl and methoxy substituents made MTC the best antioxidant among the indole derivatives used herein. Finally, the interaction between these indole derivatives and 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) radical cation and 2,2′‐diphenyl‐1‐picrylhydrazyl, respectively, provided direct evidence for these indole derivatives to scavenge radicals and emphasized the importance of electron‐donating groups for the free radical–scavenging activity of indole derivatives. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:273–279, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20289  相似文献   

12.
【背景】微生物在荒漠生态系统中经常面临多重胁迫,包括干旱、高温、UV辐射,这些环境胁迫使得荒漠土壤微生物极易在体内外积累大量的超氧离子或过氧化物,抑制其生长或者直接造成死亡。【目的】荒漠土壤细菌为适应荒漠环境表现出抗氧化特性,作为荒漠生态系统重要组成部分,对其抗氧化特性的研究为荒漠地区抗氧化资源的开发提供科学依据和技术基础,也对荒漠微生物抗氧化机制的挖掘奠定了基础。【方法】利用过氧化氢氧化筛选出两株具有强抗氧化性的荒漠土壤细菌:海床动性微菌AX6(PlanomicrobiumokeanokoitesAX6)和海洋考克氏菌KD4(Kocuriamarina KD4),通过测定其在过氧化氢条件下的生长曲线、细胞受损程度、抗氧化酶活性以及自由基清除能力,探究荒漠土壤微生物的抗氧化生理生化特征。【结果】两株细菌在低浓度过氧化氢中细胞丙二醛含量显著低于阴性对照大肠杆菌,在1.5mmol/L过氧化氢中菌株AX6的谷胱甘肽过氧化物酶活性可达108.33 U/mL,同时DPPH、超氧阴离子自由基的清除能力显著升高;此外,在3 mmol/L过氧化氢中菌株KD4的过氧化氢酶活性升高至1.16 U/mL,显...  相似文献   

13.
Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.  相似文献   

14.
Free radicals, antioxidant enzymes, and carcinogenesis   总被引:29,自引:0,他引:29  
Free radicals are found to be involved in both initiation and promotion of multistage carcinogenesis. These highly reactive compounds can act as initiators and/or promoters, cause DNA damage, activate procarcinogens, and alter the cellular antioxidnt defense system. Antioxidants, the free radicals scavengers, however, are shown to be anticarcinogens. They function as the inhibitors at both initiation and promotion/transformation stage of carcinogenesis and protect cells against oxidative damage.

Altered antioxidant enzymes were observed during carcinogenesis or in tumors. When compared to their appropriate normal cell counterparts, tumor cells are always low in manganese superoxide dismutase activity, usually low in copper and zinc superoxide dismutase activity and almost always low in catalase activity. Glutathione peroxidase and glutathione reductase activities are highly variable. In contrast, glutathione S-transferase 7-7 is increased in many tumor cells and in chemically induced preneoplastic rat hepatocyte nodules. Increased glucose-6-phosphate dehdyrogenase activity is also found in many tumors. Comprehensive data on free radicals, antioxidant enzymes, and carcinogenesis are reviewed. The role of antioxidant enzymes in carcinogenesis is discussed.  相似文献   


15.
16.
The oxidative effects were investigated of exhausting exercise in smokers, and the possible protective role of 400 mg day(-1) vitamin E (Vit E) supplementation over a period of 28 days. The subjects exercised to exhaustion including concentric-eccentric contractions following maximal cycling. The haematocrit and haemoglobin, leucocyte (WBC), plasma lactic acid (La) and malondialdehyde (MDA), erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx), serum Vit E and ceruloplasmin (CER) concentrations were measured pre and post exercise. Supplementation increased Vit E concentrations 28% and 31% in the controls and the smokers, respectively. Cigarette smoking and/or Vit E supplementation did not influence plasma lipid peroxidation or the antioxidant status at rest. Exercise caused significant haemoconcentration in all groups. When the post-exercise concentrations were adjusted for haemoconcentration, a significant elevation in La concentrations due to exercise was observed in all groups. Similarly, there were significant elevations in the adjusted WBC counts in all groups except the Vit E supplemented controls. The MDA concentrations on the other hand, when adjusted for haemoconcentration, did not exhibit any difference due to exercise. Exercise did not affect the GPx and CER activities either, while causing a SOD activity loss in all groups except the Vit E supplemented non-smokers. Serum Vit E concentrations diminished significantly in all groups after exercise. Post-exercise plasma MDA and blood antioxidant concentrations were not altered by smoking. The results would suggest that plasma volume changes should always be taken into account when assessing post-exercise plasma concentrations and that smoking and exercise do not have an additional collective effect on plasma lipid peroxidation and the dose of Vit E administered was insufficient to maintain the serum concentrations after exercise.  相似文献   

17.
Tannic acid (TA) has well-described antimutagenic and antioxidant activities. The antioxidant activity of TA has been previously attributed to its capacity to form a complex with iron ions, interfering with the Fenton reaction [Biochim. Biophys. Acta 1472, 1999, 142]. In this work, we observed that TA inhibits, in the micromolar range, in vitro Cu(II) plus ascorbate-mediated hydroxyl radical (*OH) formation (determined as 2-deoxyribose degradation) and oxygen uptake, as well as copper-mediated ascorbate oxidation and ascorbate radical formation (quantified in EPR studies). The effect of TA against 2-deoxyribose degradation was three orders of magnitude higher than classic *OH scavengers, but was similar to several other metal chelators. Moreover, the inhibitory effectiveness of TA, by the four techniques used herein, was inversely proportional to the Cu(II) concentration in the media. These results and the observation of copper-induced changes in the UV spectra of TA are indications that the antioxidant activity of TA relates to its copper chelating ability. Thus, copper ions complexed to TA are less capable of inducing ascorbate oxidation, inhibiting the sequence of reactions that lead to 2-deoxyribose degradation. On the other hand, the efficiency of TA against 2-deoxyribose degradation declined considerably with increasing concentrations of the *OH detector molecule, 2-deoxyribose, suggesting that the copper-TA complex also possesses an *OH trapping activity.  相似文献   

18.
Yakubu MA  Sofola OA  Igbo I  Oyekan AO 《Life sciences》2004,75(24):2921-2932
Development of vascular complications in diabetes has been linked to the quality of glucose regulation and characterized by endothelial dysfunction. The exact mechanism behind vascular complications in diabetes is poorly understood. However, alteration of nitric oxide (NO) biosynthesis or bioactivity is strongly implicated and the mechanism behind such alterations is still a subject for research investigations. In the present study, we tested the hypothesis that glucose-induced attenuation of vascular relaxation involves protein kinase C (PKC)-linked generation of free radicals. Vascular relaxation to acetylcholine (ACh; 10(-9)-10(-5) M), isoproterenol (10(-9)-10(-5) M), or NO donor, sodium nitropruside (SNP; 10(-9)-10(-6) M) was determined in phenylephrine (PE, 10(-7) M) pre-constricted aortic rings from Sprague-Dawley rats in the presence or absence of 30 mM glucose (30 min), L-nitro-arginine methyl ester (L-NAME; 10(-4) M for 15 min), a NO synthase inhibitor, or xanthine (10(-5) M), a free radical generator. ACh dose-dependently caused relaxation that was attenuated by L-NAME, glucose, or xanthine. Pre-incubation (15 min) of the rings with vitamin C (10(-4) M), an antioxidant or calphostin C (10(-6) M), a PKC inhibitor, restored the ACh responses. However, high glucose had no significant effects on SNP or isoproterenol-induced relaxation. ACh-induced NO production by aortic ring was significantly reduced by glucose or xanthine. The reduced NO production was restored by pretreatment with vitamin C or calphostin C in the presence of glucose, but not xanthine. These data demonstrate that oxidants or PKC contribute to glucose-induced attenuation of vasorelaxation which could be mediated via impaired endothelial NO production and bioavailability. Thus, pathogenesis of glucose-induced vasculopathy involves PKC-coupled generation of oxygen free radicals which inhibit NO production and selectively inhibit NO-dependent relaxation.  相似文献   

19.

Background

Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials.

Results

Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 μg/ml, 5.83 ± 0.07 μg/ml, 278.46 ± 15.02 μg/ml and 223.25 ± 4.19 μg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis.

Conclusions

The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.  相似文献   

20.
alpha-Tocopherol is known as the most abundant and active form of vitamin E homologues in vivo, but recently the role of other forms of vitamin E has received renewed attention. The antioxidant properties were compared for alpha-, beta-, gamma- and delta-tocopherols and tocotrienols. The following results were obtained: (1). the corresponding tocopherols and tocotrienols exerted the same reactivities toward radicals and the same antioxidant activities against lipid peroxidation in solution and liposomal membranes; (2). tocopherols gave more significant physical effect than tocotrienols on the increase in rigidity at the membrane interior; (3). tocopherols and tocotrienols showed similar mobilities within the membranes, but tocotrienols were more readily transferred between the membranes and incorporated into the membranes than tocopherols; (4). alpha-tocopherol and alpha-tocotrienol, but not the other forms, reduced Cu(II) to give Cu(I) together with alpha-tocopheryl and alpha-tocotrienyl quinones, respectively and exerted prooxidant effect in the oxidation of methyl linoleate in SDS micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号