首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light is the most important component in plant growth and development. This study synthesised a novel Mn4+-doped K2LiAlF6 red-emitting phosphor using the coprecipitation method. We observed that on addition of dopant Mn4+ ions to the host K2LiAlF6, its phase changed from rhombohedral to cubic due to the change in the lattice position of the atoms. When the atoms are excited at 468 nm, the K2LiAlF6:Mn4+ phosphor exhibited a red emission band ranging from 630 to 700 nm, centred at 638 nm, which matched well with the absorption spectra of phytochrome PR. The critical quenching content of Mn4+ ions was ~3 mol%. The critical distance between Mn4+ ions was determined to be 19.724 Å, and non-radiative energy transfer among the nearest-neighbour Mn4+ ions was the mechanism used for the concentration quenching effect. The Commission International de l'Eclairage (CIE) chromaticity coordinates of the K2LiAlF6:0.03 Mn4+ sample were (x = 0.7162, y = 0.2837). The luminescence mean decay time was calculated to be 8.29 ms. These results demonstrated the promising prospect of K2LiAlF6:Mn4+ as a red-emitting phosphor for application in red light-emitting diodes for plant cultivation.  相似文献   

2.
The recent discovery of Li‐excess cation‐disordered rock salt cathodes has greatly enlarged the design space of Li‐ion cathode materials. Evidence of facile lattice fluorine substitution for oxygen has further provided an important strategy to enhance the cycling performance of this class of materials. Here, a group of Mn3+–Nb5+‐based cation‐disordered oxyfluorides, Li1.2Mn3+0.6+0.5xNb5+0.2?0.5xO2?xFx (x = 0, 0.05, 0.1, 0.15, 0.2) is investigated and it is found that fluorination improves capacity retention in a very significant way. Combining spectroscopic methods and ab initio calculations, it is demonstrated that the increased transition‐metal redox (Mn3+/Mn4+) capacity that can be accommodated upon fluorination reduces reliance on oxygen redox and leads to less oxygen loss, as evidenced by differential electrochemical mass spectroscopy measurements. Furthermore, it is found that fluorine substitution also decreases the Mn3+‐induced Jahn–Teller distortion, leading to an orbital rearrangement that further increases the contribution of Mn‐redox capacity to the overall capacity.  相似文献   

3.
Mn‐based hexacyanoferrate NaxMnFe(CN)6 (NMHFC) has been attracting more attention as a promising cathode material for sodium ion storage owing to its low cost, environmental friendliness, and its high voltage plateau of 3.6 V, which comes from the Mn2+/Mn3+ redox couple. In particular, the Na‐rich NMHFC (x > 1.40) with trigonal phase is considered an attractive candidate due to its large capacity of ≈130 mAh g?1, delivering high energy density. Its unstable cycle life, however, is holding back its practical application due to the dissolution of Mn2+ and the trigonal‐cubic phase transition during the charge–discharge process. Here, a novel hexacyanoferrate (Na1.60Mn0.833Fe0.167[Fe(CN)6], NMFHFC‐1) with Na‐rich cubic structure and dual‐metal active redox couples is developed for the first time. Through multiple structural modulation, the stress distortion is minimized by restraining Mn2+ dissolution and the trigonal‐cubic phase transition, which are common issues in manganese‐based hexacyanoferrate. Moreover, NMFHFC‐1 simultaneously retains an abundance of Na ions in the framework. As a result, Na1.60Mn0.833Fe0.167[Fe(CN)6] electrode delivers high energy density (436 Wh kg?1) and excellent cycle life (80.2% capacity retention over 300 cycles), paving the way for the development of novel commercial cathode materials for sodium ion storage.  相似文献   

4.
Ce3+‐doped orthosilicate oxyapatite NaY9(SiO4)6O2 phosphors NaY9–x(SiO4)6O2:xCe3+ were prepared by a conventional high‐temperature solid‐state reaction method, and their spectroscopic characteristics were systematically investigated. The occupancies of Ce3+ ions at two different sites (Wyckoff 6 h and 4f sites) in NaY9(SiO4)6O2 were determined. The influence of doping concentration on the emission intensity of Ce3+ was investigated and the critical distance Rc was estimated in terms of the concentration quenching data.  相似文献   

5.
The MgO–Ga2O3–SiO2 glasses and glass‐ceramics samples doped with Eu2+/Mn2+/Er3+ and heated in reductive atmosphere were prepared by the sol–gel method. The structure, morphology and the luminescence properties were studied using X‐ray diffraction, high‐resolution transmission electron microscope, fluorescence spectra, and up‐conversion emission. The luminescence characteristics of doped ions could be influenced by temperature and matrix component. The characteristic emission of Mn2+, Eu2+ and Er3+ were seen and the energy transfer efficiency from Eu2+ to Mn2+ was enhanced as Mn2+ concentration was increased. In addition, the two‐photon process was determined for the Er3+‐doped samples.  相似文献   

6.
In this work all‐inorganic perovskite CsPbIBr2 are doped with Mn to compensate their shortcomings in band structure for the application of perovskite solar cells (PSCs). The novel Mn‐doped all‐inorganic perovskites, CsPb1?xMnxI1+2xBr2?2x, are prepared in ambient atmosphere. As the concentration of Mn2+ ions increases, the bandgaps of CsPb1?xMnxI1+2xBr2?2x decrease from 1.89 to 1.75 eV. Additionally, when the concentration of Mn dopants is appropriate, this novel Mn‐doped all‐inorganic perovskite film shows better crystallinity and morphology than its undoped counterpart. These advantages alleviate the energy loss in hole transfer and facilitate the charge‐transfer in perovskites, therefore, PSCs based on these novel CsPb1?xMnxI1+2xBr2?2x perovskite films display better photovoltaic performance than the undoped CsPbIBr2 perovskite films. The reference CsPbIBr2 cell reaches a power conversion efficiency (PCE) of 6.14%, comparable with the previous reports. The CsPb1?xMnxI1+2xBr2?2x cells reach the highest PCE of 7.36% (when x = 0.005), an increase of 19.9% in PCE. Furthermore, the encapsulated CsPb0.995Mn0.005I1.01Br1.99 cells exhibit good stability in ambient atmosphere. The storage stability measurements on the encapsulated PSCs reveal that PCE is dropped by only 8% of the initial value after >300 h in ambient. Such improved efficiency and stability are achieved using low‐cost carbon electrodes (without expensive hole transport materials and Au electrodes).  相似文献   

7.
A series of color‐tunable Ca3–2x‐y‐zSiO4Cl2 (CSC):xCe3+,xLi+,yMn2+,zEu2+ phosphors with low temperature phase structure was synthesized via the sol–gel method. An energy transfer process from Ce3+ to Mn2+ in CSC:0.01Ce3+,0.01Li+,yMn2+ (y = 0.03–0.09) and the mechanism was verified to be an electric dipole–dipole interaction. The Ce3+ and Mn2+ emission intensities were greatly enhanced by co‐doping Eu2+ ions into CSC:0.01Ce3+,0.01Li+,0.07Mn2+ phosphors due to competitive energy transfers from Eu2+/Ce3+ to Mn2+, and Ce3+ to Eu2+. Under 332 nm excitation, CSC:0.01Ce3+,0.01Li+,0.07Mn2+,zEu2+ (z = 0.0005–0.002) exhibited tunable emission colors from green to white with coexisting orange, green and violet‐blue emissions. These phosphors could have potential application in white light‐emitting diodes.  相似文献   

8.
A novel phenomenon of dual chemiluminescence (CL) was observed for the KIO4–luminol–Mn2+ system in strong alkaline solutions using the stopped‐flow technique. Scavenging study of the reactive oxygen species (ROS) suggested that the two CL peaks originated from different CL pathways precipated by distinct ROS (O2? and ?OH for the first peak, mainly 1O2 for the second peak). Generation of these ROS at different time intervals from the reactions involving IO4?, O2, and Mn2+ and their subsequent reactions with luminol induced the intense CL emission. The relative intensity of the two CL peaks can be tuned over a wide range by varying the concentrations of Mn2?, luminol and KIO4. Because of the involvement of different ROS in each pathway, the two CL peaks could respond quite differently to various substances. Moreover, variation of the intensity ratio of the two CL peaks altered the relative proportions of the corresponding ROS, thereby changing their responses to a given substance. The dual CL emission acts like a pair of tunable probes and it is believed that this CL system has great potential in analytical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A new rare‐earth‐free NaZnPO4:Mn2+ (NZP:Mn) phosphor powder has been developed by our group and investigated meticulously for the first time using secondary ion mass spectroscopy and chemical imaging techniques. The studies confirmed the effective incorporation of Mn2+ into the host lattice, resulting in an enhancement of photoluminescence intensity. Phase purity has been verified and structure parameters have been determined successfully by Rietveld refinement studies. The NZP:Mn phosphor powder exhibits strong absorption bands in the ultraviolet and visible (300–470 nm) regions with a significant broad yellow‐green (~543 nm) emission due to the characteristic spin forbidden d–d transition (4T16A1) of Mn2+ ions, indicating weak crystal field strength at the zinc‐replaced manganese site. The decay constants are a few milliseconds, which is a pre‐requisite for applications in many display devices. The results obtained suggest that this new phosphor powder will find many interesting applications in semiconductor physics, as cost‐effective light‐emitting diodes (LEDs), as solar cells and in photo‐physics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Eu2+‐doped Sr2SiO4 phosphor with Ca2+/Zn2+ substitution, (Sr1–xMx)2SiO4:Eu2+ (M = Ca, Zn), was prepared using a high‐temperature solid‐state reaction method. The structure and luminescence properties of Ca2+/Zn2+ partially substituted Sr2SiO4:Eu2+ phosphors were investigated in detail. With Ca2+ or Zn2+ added to the silicate host, the crystal phase could be transformed between the α‐form and the β‐form of the Sr2SiO4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu2+ ions occupying the ten‐fold oxygen‐coordinated Sr.(I) site and the nine‐fold oxygen‐coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr2SiO4:Eu2+ phosphors, improved remarkably on Ca2+/Zn2+ addition, and promote its application in white light‐emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An intense green luminescent Na2Ca(PO4)F:Mn2+ phosphor has been prepared at high temperature by reduction treatment in a charcoal environment. The emission band of Mn2+ was obtained at around 522 nm (green) under 259 nm excitation. Enhancement in emission intensity arising from the thermal treatment is reported. The intense emission of the spectrum was assigned to electronic transitions 4T16A1 of Mn2+ ions. Intense PL emission suggested that temperature employed plays an important role in the present matrix. X‐ray diffraction pattern, photoluminescence and morphology by SEM of the host lattice of phosphors at different temperatures have been reported in this paper. The results obtained show that the present phosphor has potential for application in green emitting phosphors for the lamp industry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A new sensitive quaternary photoluminescence enhancement system has been successfully developed to determine trace amounts of Eu3+ and Zn2+. The photoluminescence intensity of Eu ? N‐(o‐vanilin)‐1,8‐diaminonaphthalene systems was greatly increased by the addition of specific concentrations of 1, 10‐phenanthroline and Zn2+. The excitation and emission wavelengths were 274 and 617 nm, respectively. Under optimal system conditions, the photoluminescence intensity showed a linear response toward Eu3+ in the range of 5.0 × 10–6 ~ 2.0 × 10–5 M with a limit of detection (= 2.2 × 10–9 M) and the photoluminescence intensity of the system decreased linearly by increasing the Zn2+ concentration in the range of 5.0 × 10–8 ~ 1.0 × 10–6 M with a limit of detection (= 8.8 × 10–11 M). This system was successfully applied for the determination of trace amounts of Eu3+ in a high purity La2O3 matrix and in the synthetic rare earth oxide mixture, and of Zn2+ in a high purity Mg(NO3)2 · 6H2O matrix and in synthetic coexisting ionic matrixes. The energy transfer mechanism, photoluminescence enhancement of the system and interference of other lanthanide ions and common coexisting ions were also studied in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, MAl2SixO2x+4:Eu2+/Eu3+ (Eu2+ + Eu3+ = 2%, molar ratio; M = Mg, Ca, Sr, Ba; x = 0, 0.5, 1, 1.5, 2) phosphors with different SiO2 concentrations (the ratio of SiO2 to MAl2O4 is n%, n = 0, 50, 100, 150, 200, respectively) were prepared by high‐temperature solid‐state reaction under atmospheric air conditions. Their structures and photoluminescent properties were systematically researched. The results indicate that Eu3+ ions have been reduced and Eu2+ ions are obtained in air through the self‐reduction mechanism. The alkaline earth metal ions and doping SiO2 strongly affect the crystalline phase and photoluminescent properties of samples, including microstructures, relative intensity of Eu2+ to Eu3+, location of emission lines/bands. It is interesting and important that the emission color and intensities of europium‐doped various phosphors which consist of aluminosilicate matrices prepared under atmospheric air conditions could be modulated by changing the kinds of alkaline earth metal and the content of SiO2.  相似文献   

14.
In order to improve the luminescent performance of silicate blue phosphors, Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ phosphors were synthesized using one‐step calcination of a precursor prepared by chemical co‐precipitation. The crystal structure and luminescent properties of the phosphors were analyzed using X‐ray diffraction and fluorescence spectrophotometry, respectively. Because the activated ions (Eu2+) can occupy two different types of sites (Sr1 and Sr2), the emission spectrum of Eu2+ excited at 350 nm contains two single bands (EM1 and EM2) in the wavelength range 400–550 nm, centered at 463 nm, and the emission intensity first increases and then decreases with increasing concentrations of Eu2+ ions. Co‐doping of Ce3+ ions can greatly enhance the emission intensity of Eu2+ by transferring its excitation energy to Eu2+. Because of concentration quenching, a higher substitution concentration of Ce3+ can lead to a decrease in the intensity. Meanwhile, the quantum efficiency of the phosphor is improved after doping with Ce3+, and a blue shift phenomenon is observed in the CIE chromaticity diagram. The results indicate that Sr(1.5‐x)‐(1.5y)Mg0.5SiO4:xEu2+,yCe3+ can be used as a potential new blue phosphor for white light‐emitting diodes.  相似文献   

15.
A series of Mn4+-doped and Mn4+,K+-co-doped Ba2LaTaO6 (BLT) double-perovskite phosphors was synthesized using a high-temperature solid-state reaction. The phase purity and luminescence properties were also studied. The optimum doping concentration of Mn4+ and K+ was obtained by investigating the photoluminescence excitation spectra and photoluminescence emission spectra. The comparison of BLT:Mn4+ phosphors with and without K+ ions shows that the photoluminescence intensity of K+-doped phosphors was greatly enhanced. This is because there was a charge difference when Mn4+ ions were doped with Ta5+ ions in BLT. Mn4+–K+ ion pairs were formed after doping K+ ions, which hinders the nonradiative energy transfer between Mn4+ ions. Therefore, the luminescence intensity, quantum yield, and thermal stability of phosphors were enhanced. The electroluminescence spectra of BLT:Mn4+ and BLT:Mn4+,K+ were measured. The spectra showed that the light emitted from the phosphors corresponded well with chlorophyll a and phytochrome PR. The results show that the BLT:Mn4+,K+ phosphors had good luminescence properties and application prospects and are ideal materials for plant-illuminated red phosphors.  相似文献   

16.
Nanophosphors of (Sr0.98‐xMgxEu0.02)2SiO4 (x = 0, 0.18, 0.38, 0.58 and 0.78) were prepared through low temperature solution combustion method and their luminescence properties were studied. The emission peak for Eu2+ ?doped Sr2SiO4 nanophosphor is observed at ~490 nm and ~553 nm corresponding to two Sr2+ sites Sr(I) and Sr(II) respectively for 395 nm excitation. However the addition of Mg2+ dopant in Sr2SiO4 leads to suppression of ~553 nm emission peak due to absence of energy levels of Sr (II) sites which results in a single broad emission at ~460 nm. It was shown that the emission peak blue shifted with increase in Mg concentration which may be attributed to change in crystal field environment around Sr(I) sites. Therefore, the (Mg0.78Sr0.20Eu0.02)2SiO4 nanophosphor can be used for blue emission and the Sr2SiO4:Eu0.042+ for green–yellow emission at 395 nm excitations. The Commission International de L'Eclairage (CIE) chromaticity coordinates for mixed powders of (Mg0.78Sr0.20Eu0.02)2SiO4 and Sr2SiO4:Eu0.042+ (in a 1:1 ratio) fall in the white region demonstrating the possible use of the mixture in white light generation using near‐UV excitation source.  相似文献   

17.
18.
Luminescence technology has been improved with the help of semiconductor nanoparticles that possess novel optical and electrical properties compared with their bulk counterpart. The aim of this study was to design semiconductor nanocrystals in their pure (ZnS) or doped form (ZnS:Mn) with different concentrations of Mn2+ ions by a wet chemical route stabilized by ethylenediamine tetra‐acetic acid (EDTA) and to evaluate their luminescence properties. The nanocrystals were characterized by physicochemical techniques such as X‐ray diffraction (XRD), High‐resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SEAD), EDS, and ultraviolet (UV)–visible light and photoluminescence (PL) studies. These results showed the presence of cubic phase and spherically shaped nanocrystals. A blue shift with respect to their bulk counterpart was observed. PL emission spectra were observed with a fixed blue peak and the yellow‐orange bands were red shifted towards the red region under the same excitation wavelength. The orange‐red bands were attributed to the radiation transition of electrons in 3d5 unfilled shells of Mn2+ ions [4T1(4G)‐6A1(6S)]; the ZnS matrix varied with Mn2+ concentration. Shift and increase in the intensity of the PL and absorption bands were observed with increase in Mn content. The study showed that Mn2+‐doped ZnS nanocrystal emission bands can be tuned from the yellow‐orange to the red regions under a controlled synthesis process and could be used as promising luminescent emitters in the biology field upon functionalization with suitable materials. Further studies on construction with various other materials will be useful for practical applications.  相似文献   

19.
In this study, Eu‐doped Li2(Ba1‐xSrx)SiO4 powders (x = 0, 0.2, 0.4, and 0.6) were synthesized at 850°C in a reduction atmosphere (5% H2 + 95% N2) for a duration of 1 h using a solid‐state reaction method. The reduction atmosphere was infused as the synthesis temperature reached 850°C, and was removed as the temperature dropped to 800–500°C. Li2(Ba1‐xSrx)SiO4 (or Li2BaSiO4), (Ba,Sr)2SiO4 (or BaSiO4), and Li4SiO4 phases co‐existed in the synthesized Eu‐doped Li2(Ba1‐xSrx)SiO4 powders. A new finding was that the reduction atmosphere removing (RAR) temperature of the Li2(Ba1‐xSrx)SiO4 phosphors had a large effect on their photoluminescence excitation (PLE) and PL properties. Except for the 800°C‐RAR‐treated Li2BaSiO4 phosphor, PLE spectra of all other Li2(Ba1‐xSrx)SiO4 phosphors had one broad emission band with two emission peaks centred at ~242 and ~283 nm; these PL spectra had one broad emission band with one emission peak centred at 502–514 nm. We showed that the 800°C‐RAR‐treated Li2BaSiO4 phosphor emitted a red light and all other Li2(Ba1‐xSrx)SiO4 phosphors emitted a green light. Reasons for these results are discussed thoroughly.  相似文献   

20.
Red emission intensity was optimized in three stages, by investigating the effects of: (i) host composition (Gd, Y and Gd/Y), (ii) codoping Li+ as a sensitizer and, finally, (iii) with a SiO2 shell coating as a protecting layer. Lanthanide vanadate powder phosphors were synthesized using a modified colloidal precipitation technique. The effects of SiO2 coating on phosphor particles were characterized using scanning electron microscopy (SEM)‐EDAX, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) measurements. An improvement in the PL intensity on Li codoping was due to improved crystallinity, which led to higher oscillating strengths for the optical transitions, and also a lowering of the inversion symmetry of Eu3+ ions. Red emission intensity due to 5D05D2 transition of the phosphor Y0.94VO4:Eu3+0.05,Li+0.01 was enhanced by 22.28% compared with Y0.95VO4:Eu3+0.05, and was further improved by 58.73% with SiO2 coating. The luminescence intensity (I) and colour coordinates (x, y) of the optimized phosphor Y0.94VO4:Eu3+0.05,Li+0.01@SiO2, where I = 13.07 cd/m2 and (x = 0.6721, y = 0.3240), were compared with values for a commercial red phosphor (Y2O2S:Eu3+), where I = 27 cd/m2 and (x = 0.6522, y = 0.3437). The measured colour coordinates are superior to those of the commercial red phosphor, and moreover, match well with standard NTSC values (x = 0.67, y = 0.33). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号