首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Fujimoto Z  Kimura K 《Proteins》2012,80(3):722-732
Poly‐γ‐glutamate hydrolase P (PghP) of Bacillus subtilis bacteriophage ΦNIT1 hydrolyzes the γ‐glutamyl peptide linkage of extracellular poly‐γ‐glutamate produced by bacilli, which facilitates infection and propagation of phage progenies. Crystal structure of PghP was determined at a resolution of 1.9 Å. Structure of PghP was elucidated as a globular protein with an open α/β mixed core structure and a seven‐stranded parallel/anti‐parallel β‐sheet. The β‐sheet contained a core four‐stranded parallel β‐sheet. A zinc‐binding motif, His‐Glu‐His, was identified at the C‐terminal end of the β‐sheet. Structure analysis demonstrated that PghP, which had not been previously classified into any peptidase/protease family due to lack of amino acid sequence similarity with known enzymes, had a catalytic center containing a zinc ion and an overall topology resembling mammalian carboxypeptidase A and related enzymes. Structural comparisons indicated important amino acid residues of PghP for catalysis and recognition of the γ‐peptide bond of poly‐γ‐glutamate, which was confirmed by site‐directed mutagenesis of PghP. Proteins 2011. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The structural glycoprotein gene gp41 homologue of Spodoptera litura nucleopolyhedrosis virus (SpltNPV-I *) was identified in the 4.0 kb EcoRI-L fragment of the viral genome. The nucleotide sequence of 2063 bp of this fragment revealed an open reading frame of 1014 nucleotides to encode a polypeptide of 337 amino acids. Analysis of nucleotide and deduced amino acid sequences of the putative ORF indicated its identity with gp41 protein of other baculoviruses sharing maximum homology with that of Spodoptera frugiperda nucleopolyhedrosis virus (SfNPV). The coding sequence was preceded by an AT-rich region containing the consensus baculoviral late promoter motif RTAAG. The putative SpltNPV gp41 ORF was abundantly expressed as a 37 kDa apoprotein in E. coli and as a 50 kDa glycoprotein in Sf9 cells. The recombinant protein expressed in insect cells was glycosylated (20%) and has GlcNAc as the terminal sugar. The gene is conserved among baculoviruses and places SpltNPV-I close to Spodoptera frugiperda and Spodoptera exigua NPVs in phylogenetic tree.Assigned GenBank accession no. for the nucleotide sequence data is AF445192.abbreviated as SlNPV in earlier publications and GenBank  相似文献   

3.
A C‐type lectin‐like protein (Ec‐CTLP) was cloned from the grouper Epinephelus coioides. The full‐length cDNA of Ec‐CTLP was composed of 905 bp with a 522 bp open reading frame that encodes a 174‐residue protein. The putative amino acid sequence of Ec‐CTLP contains a signal peptide of 19 residues at the N‐terminus and a CLECT domain from Cys43 to Arg169 and a conserved imperfect WND (Trp‐Asn‐Asp) motif. The homologous identity of deduced amino acid sequences is from 32 to 42% with other fishes. The expression of Ec‐CTLP was differently upregulated in E. coioides spleen (germline stem) cells after being challenged at 16 and 4° C. Intracellular localization revealed that Ec‐CTLP was distributed only in the cytoplasm. Recombinant Ec‐CTLP (rEc‐CTLP) was expressed in Escherichia coli BL21 (DE3) and purified for mouse Mus musculus anti‐Ec‐CTLP serum preparation. The rEc‐CTLP fusion protein does not possess haemagglutinating activity, but improves survival from frozen bacteria. The survival of bacteria (including gram‐negative E. coli and gram‐positive Staphylococcus aureus) was positively correlated with the concentration of the rEc‐CTLP. These findings can provide clues to help understand the probable C‐type lectin in marine fish innate immunity.  相似文献   

4.
Summary Vitreoscilla hemoglobin is involved in oxygen metabolism of this bacterium, possibly in an unusual role for a microbe. We have isolated the Vitreoscilla hemoglobin structural gene from a pUC19 genomic library using mixed oligodeoxy-nucleotide probes based on the reported amino acid sequence of the protein. The gene is expressed in Escherichia coli from its natural promoter as a major cellular protein. The nucleotide sequence, which is in complete agrecment with the known amino acid sequence of the protein, suggests the existence of promoter and ribosome binding sites with a high degree of homology to consensus E. coli upstream sequences. In the case of at least some amino acids, a codon usage bias can be detected which is different from the biased codon usage pattern in E. coli. The down-stream sequence exhibits homology with the 3 end sequences of several plant leghemoglobin genes. E. coli cells expressing the gene contain greater than fivefold more heme than controls.  相似文献   

5.
The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale. Received: 19 September 1996 / Accepted: 21 May 1997  相似文献   

6.
Summary A 1.9 kb DNA region of Rhizobium leguminosarum biovar viciae strain VF39 capable of promoting microaerobic and symbiotic induction of the Rhizobium meliloti fixN gene was identified by heterologous complementation. Sequence analysis of this DNA region revealed the presence of two complete open reading frames, orf240 and orf114. The deduced amino acid sequence of orf240 showed significant homology to Escherichia coli Fnr and R. meliloti FixK. The major difference between ORF240 and FixK is the presence of 21 N-terminal amino acids in ORF240 that have no counterpart in FixK. A similar protein domain is also present in E. coli Fnr and is essential for the oxygen-regulated activity of this protein. Analysis of the nucleotide sequence upstream of orf240 revealed a motif similar to the NtrA-dependent promoter consensus sequence, as well as two DNA regions resembling the Fnr consensus binding sequence. A Tn5-generated mutant in orf240 lost the ability to induce the R. meliloti fixN-lacZ fusion. Interestingly, this mutant was still capable of nitrogen fixation but showed reduced nitrogenase activity.  相似文献   

7.
Hyun Joo  Jerry Tsai 《Proteins》2014,82(9):2128-2140
To understand the relationship between protein sequence and structure, this work extends the knob‐socket model in an investigation of β‐sheet packing. Over a comprehensive set of β‐sheet folds, the contacts between residues were used to identify packing cliques: sets of residues that all contact each other. These packing cliques were then classified based on size and contact order. From this analysis, the two types of four‐residue packing cliques necessary to describe β‐sheet packing were characterized. Both occur between two adjacent hydrogen bonded β‐strands. First, defining the secondary structure packing within β‐sheets, the combined socket or XY:HG pocket consists of four residues i, i+2 on one strand and j, j+2 on the other. Second, characterizing the tertiary packing between β‐sheets, the knob‐socket XY:H+B consists of a three‐residue XY:H socket (i, i+2 on one strand and j on the other) packed against a knob B residue (residue k distant in sequence). Depending on the packing depth of the knob B residue, two types of knob‐sockets are found: side‐chain and main‐chain sockets. The amino acid composition of the pockets and knob‐sockets reveal the sequence specificity of β‐sheet packing. For β‐sheet formation, the XY:HG pocket clearly shows sequence specificity of amino acids. For tertiary packing, the XY:H+B side‐chain and main‐chain sockets exhibit distinct amino acid preferences at each position. These relationships define an amino acid code for β‐sheet structure and provide an intuitive topological mapping of β‐sheet packing. Proteins 2014; 82:2128–2140. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Summary An oligonucleotide mixture corresponding to the codons for conserved and repeated amino acid sequences of bacterial sialidases (Roggentin et al. 1989) was used to clone a 4.3 kb PstI restriction fragment of Clostridium septicum DNA in Escherichia coli. The complete nucleotide sequence of the sialidase gene was determined from this fragment. The derived amino acid sequence corresponds to a protein of 110000 Da. The ribosomal binding site and promoter-like consensus sequences were identified upstream from the putative ATG initiation codon. The molecular and immunological properties of the sialidase expressed by E. coli are similar to those of the sialidase as isolated from C. septicum. The newly synthesized protein is assumed to include a leader peptide of 26 amino acids. On sequence alignment, the sialidases from C. septicum, C. sordellii and C. perfringens show significant homologies. As in other bacterial sialidases, conserved amino acid sequences occur at four positions in the protein. Aside from the consensus sequences, only poor homology to other bacterial and viral sialidases was found. The consensus sequence could be identified even in other, non-sialidase proteins, indicating a common function or the evolutionary relatedness of these proteins.  相似文献   

9.
Haemophilus influenzae elaborates a surface protein called Hap, which is associated with the capacity for intimate interaction with cultured epithelial cells. Expression of hap results in the production of three protein species: outer membrane proteins of approximately 155 kDa and 45 kDa and an extracellular protein of approximately 110 kDa. The 155 kDa protein corresponds to full-length mature Hap (without the signal sequence), and the 110 kDa extracellular protein represents the N-terminal portion of mature Hap (designated Haps). In the present study, we examined the mechanism of processing and secretion of Hap. Site-directed mutagenesis suggested that Hap is a serine protease that undergoes autoproteolytic cleavage to generate the 110 kDa extracellular protein and the 45 kDa outer membrane protein. Biochemical analysis confirmed this conclusion and established that cleavage occurs on the bacterial cell surface. Determination of N-terminal amino acid sequence and mutagenesis studies revealed that the 45 kDa protein corresponds to the C-terminal portion of Hap, starting at N1037. Analysis of the secondary structure of this protein (designated Hapβ) predicted formation of a β-barrel with an N-terminal transmembrane α-helix followed by 14 transmembrane β-strands. Additional analysis revealed that the final β-strand contains an amino acid motif common to other β-barrel outer membrane proteins. Upon deletion of this entire C-terminal consensus motif, Hap could no longer be detected in the outer membrane, and secretion of Haps was abolished. Deletion or complete alteration of the final three amino acid residues had a similar but less dramatic effect, suggesting that this terminal tripeptide is particularly important for outer membrane localization and/or stability of the protein. In contrast, isolated point mutations that disrupted the amphipathic nature of the consensus motif or eliminated the C-terminal tryptophan had no effect on outer membrane localization of Hap or secretion of Haps. These results provide insight into a growing family of Gram-negative bacterial exoproteins that are secreted by an IgA1 protease-like mechanism; in addition, they contribute to a better understanding of the structural determinants of targeting of β-barrel proteins to the bacterial outer membrane.  相似文献   

10.
The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine‐stabilized αβ motif (CSαβ) consists of an α‐helix and an antiparallel triple‐stranded β‐sheet connected by two disulfide bridges. Proteins containing this motif share low sequence identity but high structural similarity and has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino acid tolerance of CSαβ motif. A systematic alanine substitution is performed on the VrD1. The key residues governing the inhibitory function and structure stability are monitored. Thirty‐two of 46 residue positions of VrD1 are altered by site‐directed mutagenesis techniques. The circular dichroism spectrum, intrinsic fluorescence spectrum, and chemical denaturation are used to analyze the conformation and structural stability of proteins. The secondary structures were highly tolerant to the amino acid substitutions; however, the protein stabilities were varied for each mutant. Many mutants, although they maintained their conformations, altered their inhibitory function significantly. In this study, we reported the first alanine scan on the plant defensin containing the CSαβ motif. The information is valuable to the scaffold with the CSαβ motif and protein engineering.  相似文献   

11.
Summary The Zymomonas mobilis gene sacB that encodes the extracellular levansucrase was cloned and expressed in Escherichia coli. The gene product exhibited both sucrose hydrolysis activity and levan forming capability. Sub-cellular fractionation of E. coli carrying pLSS41 revealed that about 95% of the total sucrase activity was detected in the cytoplasmic fraction. The levansucrase gene was overexpressed (about hundred fold) in E. coli under T7 polymerase expression system. Nucleotide sequence analysis of this gene revealed an open reading frame of 1269 bp long coding for a protein of 423 amino acids with a molecular mass of 46.7 KDa. The deduced amino acid sequence was identical to the N-terminal amino acids of protein A51 of Z. mobilis ZM4. Therefore, the product of sacB is levansucrase. This is the first extracellular enzyme of Z. mobilis sequenced which does not possess a signal sequence. This gene is located 198 bp upstream of sacC gene encoding for the extracellular sucrase forming a gene cluster  相似文献   

12.
The gene encoding a 23 kDA serine esterase from the cyanobacterium Spirulina platensis has been identified, cloned, characterized and expressed in Escherichia coli. The primary structure of the esterase deduced from the DNA sequence displayed 32% sequence identity with the carboxylesterase (esterase II) encoded by estB of Pseudomonas fluorescens; the highest degree of homology is found in a stretch of 11 identical or highly conserved amino acid residues corresponding to the GXSXG consensus motif found in the catalytic site of many serine proteases, lipases and esterases.  相似文献   

13.
WSXWS motif is a conserved amino acid sequence that is present in type I cytokine receptors. This motif that can be found both in the ligand binding chains and signal transducer molecule of the receptors with different amino acids at the position “X” plays a role in the receptor folding, ligand binding and signal transduction as well. Structural analysis proved that WSEWS motif of IL‐6R is located in a highly accessible location in the protein. Structural properties and chemotaxis of a tetrapeptide library with SXWS sequence, where X was the 19 proteinogenic amino acids except cystein were systematically studied earlier. It has been proved that C‐terminal amidation and the identity of amino acid X had a pronounced influence on the chemotactic properties but less of the structure of the peptides. Here, we present our findings on the effect of a tetrapeptide and a pentapeptide library with the sequence of SXWS and WSXWS on the chemotaxis and adhesion of J774 murine macrophage cell line. We studied the effect of the presence/absence of N‐terminal tryptophan and the different amino acids at the X position on these physiological responses. Results indicated that amino acid X had a marked influence on chemotaxis, adhesion as well as on proliferation induced by (W)SXWS peptides. Elongation of SXWS sequence with a tryptophan at the N terminus also altered pronouncedly all the physiological responses of the cells studied. A good correlation could be observed between the chemotaxis and the proliferation and physicochemical parameters of the amino acid X. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A 19-kb plasmid, pNI100, was isolated from Nocardia italica CCRC12359; its replicon was cloned and characterized as having a single open reading frame (ORF) of 1188 bp specifying 396 amino acids (aa). Analyses of the deduced aa sequence of the Rep protein indicated that characteristics of three consensus sequences and a P-loop-like motif in the Rep protein of plasmid pSG5, a conjugative plasmid involving a rolling-circle replication mechanism, were conserved in those of plasmid pNI100. Phenotypically, a pock structure was produced in the regenerated mycelium by introducing pNI100 DNA into the Streptomyces lividans protoplast. This result strongly suggests that pNI100 is a conjugative plasmid and probably replicates by a rolling-circle replication mechanism. By using the replicon of pNI100, a bifunctional plasmid pNI105 that could replicate in both Escherichia coli and S. lividans was constructed and found to be a useful cloning shuttle vector.  相似文献   

15.
An Fe(II)/α‐ketoglutarate‐dependent dioxygenase, SadA, was obtained from Burkholderia ambifaria AMMD and heterologously expressed in Escherichia coli. Purified recombinant SadA had catalytic activity towards several N‐substituted l‐amino acids, which was especially strong with N‐succinyl l‐leucine. With the NMR and LC‐MS analysis, SadA converted N‐succinyl l‐leucine into N‐succinyl l‐threo‐β‐hydroxyleucine with >99% diastereoselectivity. SadA is the first enzyme catalysing β‐hydroxylation of aliphatic amino acid‐related substances and a potent biocatalyst for the preparation of optically active β‐hydroxy amino acids.  相似文献   

16.
17.
Peptidoglycan (PG) is an essential, envelope‐fortifying macromolecule of eubacterial cell walls. It is a large polymer with multiple glycan strands interconnected by short peptide chains forming a sac‐like structure around cytoplasmic membrane. In most bacteria, the composition of the peptide chain is well‐conserved and distinctive; in E. coli, the peptide chain length varies from two to five amino acids with a tetrapeptide consisting of L‐alanine – D‐glutamic acid – meso‐diaminopimelic acid – D‐alanine. However, it is not known how bacteria conserve the composition and sequence of peptide chains of PG. Here, we find that a conserved open reading frame of unknown function, YfiH (renamed PgeF) contributes to the maintenance of peptide composition in E. coli. Using genetic, biochemical and mass spectrometrical analyses we demonstrate that absence of yfiH results in incorporation of non‐canonical amino acids, L‐serine or glycine in place of L‐alanine in PG sacculi leading to β‐lactam – sensitivity, lethality in mutants defective in PG remodelling or recycling pathways, altered cell morphology and reduced PG synthesis. yfiH orthologs from other Gram‐positive genera were able to compensate the absence of yfiH in E. coli indicating a conserved pathway in bacterial kingdom. Our results suggest editing/quality control mechanisms exist to maintain composition and integrity of bacterial peptidoglycan.  相似文献   

18.
19.
Summary The nucleotide sequence of the ompV gene of Vibrio cholerae was determined. The product of the gene is a 28,000 dalton protein which, after the removal of a 19 amino acid signal sequence, produces a mature outer membrane protein of 26,000 daltons. The cleavage site was determined by amino-terminal amino acid sequencing of the purified mature protein. The DNA upstream of the gene shows the presence of a typical promoter region as judged from the Escherichia coli consensus information; however, the Shine-Dalgarno sequence is associated with a region capable of forming a secondary structure in the mRNA. The formation of this structure would inhibit binding of the mRNA to the ribosome and reduce translation. It is proposed that this structure is recognized by a positive activator in V. cholerae and because of its absence in E. coli ompV is poorly expressed. The distribution of rare codons within ompV suggests that they may serve to slow down the translation of particular domains such that the nascent polypeptide has an opportunity to take up its conformation without interference from the later formed regions. Such a mechanism could aid localization of the protein if export were by a cotranslational secretion system.  相似文献   

20.
The human gut symbiont Bacteroides fragilis has a general protein O‐glycosylation system in which numerous extracytoplasmic proteins are glycosylated at a three amino acid motif. In B. fragilis, protein glycosylation is a fundamental and essential property as mutants with protein glycosylation defects have impaired growth and are unable to competitively colonize the mammalian intestine. In this study, we analysed the phenotype of B. fragilis mutants with defective protein glycosylation and found that the glycan added to proteins is comprised of a core glycan and an outer glycan. The genetic region encoding proteins for the synthesis of the outer glycan is conserved within a Bacteroides species but divergent between species. Unlike the outer glycan, an antiserum raised to the core glycan reacted with all Bacteroidetes species tested, from all four classes of the phylum. We found that diverse Bacteroidetes species synthesize numerous glycoproteins and glycosylate proteins at the same three amino acid motif. The wide‐spread conservation of this protein glycosylation system within the phylum suggests that this system of post‐translational protein modification evolved early, before the divergence of the four classes of Bacteroidetes, and has been maintained due to its physiological importance to the diverse species of this phylum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号