首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leishmaniasis is a neglected broad clinical spectrum disease caused by protozoa of the genus Leishmania, which affect millions of people annually in the world and the treatment has severe side effects and resistant strains have been reported. Mesoionic salts are a subclass of the betaine group with extensive biological activity such as microbicide and anti-inflammatory In this work, we analyze the cytotoxic effects of mesoionic salts, 4-phenyl-5-(X-phenyl)-1,3,4-thiadiazolium-2-phenylamine chloride (X = 4 Cl; 3,4 diCl and 3,4 diF), on Leishmania amazonensis in vitro. Initially, Mesoionic salts toxicity were evaluated by XTT assay on L. amazonensis promastigotes. Our results show that the mesoionic salts MI-3,4 diCl, MI-4 Cl and MI-3,4 diF were toxic to the promastigote parasite with IC50 values of 14.3, 40.1 and 61.8 μM, respectively. The amastigote survival was evaluated in treated infected-macrophages, and the results demonstrate that MI-4 Cl (IC50 = 33 μM) and MI-3,4 diCl (IC50 = 43 μM) have a toxic effect against these forms. None of the mesoionic compounds tested present host cell toxicity up to the tested concentration of 100 μM. The selectivity index for MI-3,4 diCl and MI-4 Cl were 3.94 and 6.97, respectively. Nitric oxide (NO) production assayed by Griess reagent, in LPS-activated macrophages or not, in the presence of the salts showed that only the MI-3,4 diCl compound reduced NO levels. Lipid profile analysis of treated-promastigotes showed no alteration of neutral lipids. Evaluation of mitochondrial membrane potential (∆Ψm) showed that the MI-4Cl compound was able to reduce (∆Ψm) by 50%. Therefore, our results suggest that the chlorinated compounds are promising biomolecules, which cause inhibition of L. amazonensis promastigotes, amastigotes, leading to mitochondrial damage.  相似文献   

2.
Twenty-three heterocyclic compounds were evaluated for their potential as trypanothione reductase inhibitors. As a result, the harmaline, 10-thiaisoalloxazine, and aspidospermine frameworks were identified as the basis of inhibitors of Trypanosoma cruzi trypanothione reductase. Two new compounds showed moderately strong, linear competitive inhibition, namely N,N-dimethyl-N-[3-(7-methoxy-1-methyl-3,4-dihydro-9H-beta-carbolin-9-yl)propyl]amine (15) and 1,3-bis[3-(dimethylamino)propyl]-1,5-dihydro-2H-pyrimido[4,5-b][1,4]benzothiazine-2,4(3H)-dione (21), with K(i) values of 35.1+/-3.5microM and 26.9+/-1.9microM, respectively. Aspidospermine (25) inhibited T. cruzi TryR with a K(i) of 64.6+/-6.2microM. None of the compounds inhibited glutathione reductase. Their toxicity toward promastigotes of Leishmania amazonensis was assessed.  相似文献   

3.
The aim of this work was to assess the significance of the interaction of the 1,3,4-thiadiazolium derivatives MI-J, MI-4F and MI-2,4diF with mitochondrial membrane and their effects on energy-linked functions. Mitochondrial swelling in the absence of substrate was inhibited by all derivatives; however, the fluorine derivatives were most effective. MI-4F decreased swelling by ~32% even at the lowest concentration (65 nmol mg(-1) protein), reaching ~67% at the concentration of 130 nmol mg(-1) protein. Swelling of mitochondria in the presence of oxidizable substrates was also strongly decreased by all derivatives. This effect was more pronounced when using glutamate plus malate, and also fluorine derivatives, which promoted complete inhibition at all concentrations (6.5-130 nmol mg(-1) protein). Swelling occurred when succinate was the substrate in the presence of MI-J (6.5-65 nmol mg(-1) protein); however, the shrinkage rate was strongly decreased. MI-4F and MI-2,4diF also inhibited swelling, with total inhibition occurring at a concentration of 65 nmol mg(-1) protein. Lipid peroxidation induced by Fe(3+)-ADP/2-oxoglutarate in isolated mitochondria was inhibited time- and dose-dependently by the derivatives, reaching complete inhibition at the highest concentration (80 nmol mg(-1) protein). However, when lipid peroxidation was initiated by peroxyl radicals generated from AAPH, the inhibition was less intense, reaching ~50%, ~40% and ~58% with MI-J, MI-4F and MI-2,4diF (80 nmol mg(-1) protein), respectively. The mesoionic compounds also showed superoxide radical scavenging ability of ~22%, ~32% and ~40% (80 nmol mg(-1) protein), respectively. Fluorescence polarization experiments showed that the derivatives are able to enter the bilayer, decreasing its fluidity in the hydrophobic DMPC membrane region and ordering the fluid phase. Our results suggest that MI-J, MI-4F and MI-2,4diF interact significantly, albeit in different modes, with mitochondrial membrane, and that fluorine derivatives seem to alter the membrane's properties more markedly.  相似文献   

4.
Old yellow enzyme (OYE) is an NADPH oxidoreductase capable of reducing a variety of compounds. It contains flavin mononucleotide (FMN) as a prosthetic group. A ternary complex structure of OYE from Trypanosoma cruzi (TcOYE) with FMN and one of the substrates, p-hydroxybenzaldehyde, shows a striking movement around the active site upon binding of the substrate. From a structural comparison of other OYE complexed with 12-oxophytodienoate, we have constructed a complex structure with another substrate, prostaglandin H(2) (PGH(2)), to provide a proposed stereoselective reaction mechanism for the reduction of PGH(2) to prostaglandin F(2α) by TcOYE.  相似文献   

5.
1. The kinetics of the reaction of di-(2-chloroethyl) 3-chloro-4-methylcoumarin-7-yl phosphate (haloxon) and related compounds with acetylcholinesterase were studied and found to be unusual. 2. By a progressive reaction haloxon produces a di-(2-chloroethyl)phosphorylated enzyme. The influence of substrate on this reaction leading to a phosphorylated active centre was studied. From competition experiments between inhibitor and substrate values of K(m) for acetylcholine and acetylthiocholine of 0.79mm and 0.23mm respectively were derived. 3. Haloxon also combines with acetylcholinesterase by a non-progressive reaction, producing a complex that is reversible by dilution and by high concentrations of acetylcholine and acetylthiocholine. From this non-progressive reaction the competition between haloxon and substrate was studied, and it was shown that haloxon combines with a site involved in inhibition by substrate. From competition experiments the following dissociation constants were derived: for combination of haloxon and this site K(i) is 4.9mum and for the combination of substrates with this site K(88) values are 12mm and 3.3mm for acetylcholine and acetylthiocholine respectively. 4. The non-phosphorus-containing compound 3-chloro-7-hydroxy-4-methylcoumarin was shown to be a good reagent for the site involved in inhibition by substrate; its dissociation constant for the combination with this site is 30mum. 5. In order to interpret the experimental results, theoretical equations were derived for an enzyme with two binding sites to both of which substrate and inhibitor can combine. The equations correlate the activity of the enzyme with the concentration of substrate and inhibitor, for both progressive and non-progressive inhibition. These equations are applicable to reactions of acetylcholinesterase with organophosphorus compounds, carbamates etc. and may be applicable to other enzymes possessing two binding sites.  相似文献   

6.
The NADP-linked glutamate dehydrogenase (NADP-gluDH) purified from epimastigotes of the Tulahuén strain, Tul 2 stock, of Trypanosoma cruzi, was inhibited by Cibacron Blue FG3A, and inactivated by preincubation with phenylglyoxal or Woodward's Reagent K. The inhibition by Cibracron Blue FG3A, competitive towards NADPH with an apparent Ki of 20 microM, suggests that the enzyme presents the "dinucleotide fold" characteristic of most dehydrogenases and kinases. The inactivation of the NADP-gluDH by preincubation with phenylglyoxal, with a reaction order of 1, and the partial protection afforded by alpha-oxoglutarate, suggest the presence of one arginine residue in the active site of the enzyme, which might participate in the binding of alpha-oxoglutarate through interaction with one of the carboxyl groups of the substrate. The inactivation of the NADP-gluDH by preincubation with Woodward's Reagent K suggests the presence of a carboxyl group, from an aspartic or glutamic acid residue, at the active site, which might participate in the binding of the cationic substrate NH+4. The presence of NADPH during preincubation with the reagent increased the inactivation rate, which suggests that binding of the coenzyme increases the exposure of the reactive carboxyl group.  相似文献   

7.
Bovine liver glutamate dehydrogenase is known to bind reduced coenzyme at two sites/subunit, one catalytic and one regulatory; ADP competes for the latter site. The enzyme is here shown to be catalytically active with the thionicotinamide analogue of NADPH [( S]NADPH). For native enzyme, ultrafiltration studies revealed that [S]NADPH reversibly occupies about two sites/enzyme subunit in the absence of other ligands; by the addition of ADP, [S]NADPH binding can be limited to one molecule/subunit. The enzyme is irreversibly inactivated by reaction with 4-(iodoacetamido)salicylic acid (ISA) at lysine126 within the 2-oxoglutarate binding site [Holbrook, J.J., Roberts, P.A. & Wallis, R.B. (1973) Biochem. J. 133, 165-171]. ISA-modified enzyme binds 1 molecule [S]NADPH/subunit in the absence of ADP, suggesting that reaction at the substrate site blocks binding at the catalytic, but not at the regulatory site. The fluorescence spectrum of ISA-modified enzyme overlaps the absorption spectrum of [S]NADPH allowing a distance measurement between these sites by resonance energy transfer. [S]NADPH quenches the emission of ISA-modified enzyme, yielding 3.2 nm as the average distance between sites. ADP competes for the [S]NADPH site but does not affect the fluorescence of ISA-modified enzyme, indicating that [S]NADPH quenching is attributable to energy transfer rather than to a conformational change. The 3.2 nm thus represents the distance between the 2-oxoglutarate and reduced coenzyme regulatory sites of glutamate dehydrogenase.  相似文献   

8.
In this work, we combined molecular modeling, computational docking and in vitro analysis to explore the antileishmanial effect of some resveratrol analogs (ResAn), focusing on their pro-oxidant effect. The molecular target was the trypanothione reductase of Leishmania braziliensis (LbTryR), an essential component of the antioxidant defenses in trypanosomatid parasites. Three-dimensional structures of LbTryR were modeled and molecular docking studies of ResAn1-5 compounds showed the following affinity: ResAn1?>?ResAn2?>?ResAn4?>?ResAn5?>?ResAn3. Positive correlation was observed between these compounds’ affinity to the LbTryR and the IC50 values against Leishmania sp (ResAn1?<?ResAn2?<?ResAn4), which allows for TryR being considered an important target for them. As the compound ResAn1 showed the best antileishmanial activity, and docking studies showed its high affinity for NADP binding site (NS) of TryR, plus having been able to induce ROS production in L. braziliensis promastigotes treated, ResAn1 probably occupies NS interfering in the electron transfer processes responsible for the catalytic reaction. The in silico prediction of ADMET properties suggests that ResAn1 may be a promising drug candidate with properties to cross biological membranes and high gastrointestinal absorption, not violating Lipinski’s rules. Ultimately, the antileishmanial effect of ResAn can be associated with a pro-oxidant effect which, in turn, can be exploited as an antimicrobial agent.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h). To identify the death pathway related to cytotoxicity, the HepG2 cells treated by mesoionic compounds were labeled with both annexin V and PI, and analyzed by flow cytometry. All compounds increased the number of doubly-stained cells at 25 μM after 24 h: by 76% for MI-J, 25% for MI-4F and MI-2,4diF, and 11% for MI-D. It was also verified that increased DNA fragmentation occurred upon MI-J, MI-4F and MI-2,4diF treatments (by 12%, 9% and 8%, respectively, at 25 μM after 24 h). These compounds were only weakly, or not at all, transported by the main multidrug transporters, P-glycoprotein, ABCG2 and MRP1, and were able to slightly inhibit their drug-transport activity. It may be concluded that 1,3,4-thiadiazolium compounds, especially the hydroxy derivative MI-J, constitute promising candidates for future investigations on in-vivo treatment of hepatocellular carcinoma.  相似文献   

10.
Kinetic measurements indicate that the energy-independent transhydrogenation of 3-acetylpyridine-NAD+ by NADPH in membranes of Escherichia coli follows a rapid equilibrium random bireactant mechanism. Each substrate, although reacting preferentially with its own binding site, is able to interact with the binding site of the other substrate to cause inhibition of enzyme activity. 5'-AMP (and ADP) and 2'-AMP interact with the NAD+- and NADP+-binding sites, respectively. Phenylglyoxal and 2,3-butanedione in borate buffer inhibit transhydrogenase activity presumably by reacting with arginyl residues. Protection against inhibition by 2,3-butanedione is afforded by NADP+, NAD+, and high concentrations of NADPH and NADH. Low concentrations of NADPH and NADH increase the rate of inhibition by 2,3-butanedione. Similar effects are observed for the inactivation of the transhydrogenase by tryptic digestion in the presence of these coenzymes. It is concluded that there are at least two conformations of the active site of the transhydrogenase which differ in the extent to which arginyl residues are accessible to exogenous agents such as trypsin and 2,3-butanedione. One conformation is induced by low concentrations of NADH and NADPH. Under these conditions the coenzymes could be reacting at the active site or at an allosteric site. The stimulation of transhydrogenase activity by low concentrations of the NADH is consistent with the latter possibility.  相似文献   

11.

Background

Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1–16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated.

Results

F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml.

Conclusion

These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.  相似文献   

12.
A series of thirty-one selenocompounds covering a wide chemical space was assessed for in vitro leishmanicidal activities against Leishmania infantum amastigotes. The cytotoxicity of those compounds was also evaluated on human THP-1 cells. Interestingly most tested derivatives were active in the low micromolar range and seven of them (A.I.3, A.I.7, B.I.1, B.I.2, C.I.7 C.I.8 and C.II.8) stood out for selectivity indexes higher than the ones exhibited by reference compounds mitelfosine and edelfosine. These leader compounds were evaluated against infected macrophages and their trypanothione reductase (TryR) inhibition potency was measured to further approach the mechanism by which they caused their action. Among them diselenide tested structures were pointed out for their ability to reduce infection rates. Three of the leader compounds inhibited TryR effectively, therefore this enzyme may be implicated in the mechanism of action by which these compounds cause their leishmanicidal effect.  相似文献   

13.
Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C5 alcohols (isopentenyl and dimethylallyl) to form C10 and C15 diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.  相似文献   

14.
The kinetic mechanism of cytochrome c reduction by a Trypanosoma cruzi cytosolic flavoenzyme was investigated by initial velocity determinations, by product inhibition patterns, and by the characteristics of inhibition by analogs. The data suggest a two-site ping-pong mechanism in which NADPH reduces the flavin, which is then reoxidized in two one-electron steps by reaction with two molecules of cytochrome c. The two-site nature of the mechanism is probably related to the dimeric nature of the enzyme, and the binding sites of cytochrome c and NADPH are probably on opposite sites of the FAD.  相似文献   

15.
This paper describes the synthesis of 4'-substituted and 3',4'-disubstituted 5-benzyl-2,4-diaminopyrimidines as selective inhibitors of leishmanial and trypanosomal dihydrofolate reductase. Compounds were then assayed against the recombinant parasite and human enzymes. Some of the compounds showed good activity. They were also tested against the intact parasites using in vitro assays. Good activity was found against Trypanosoma cruzi, moderate activity against Trypanosoma brucei and Leishmania donovani. Molecular modeling was undertaken to explain the results. The leishmanial enzyme was found to have a more extensive lipophilic binding region in the active site than the human enzyme. Compounds which bound within the pocket showed the highest selectivity.  相似文献   

16.
The following hydrazono derivatives (I-XIX) of type (A) (sequence in text) where Rn = (sequence in text ) (I-XVII); (sequence in text) (XVIII); -CCl3 (XIX); and Xn = H (I); 2-Cl (II); 3-Cl (III); 4-Cl (IV); 2-NO2 (V); 3-NO2 (VI); 4-NO2 (VII); 2-OH (VIII); 3-OH (IX); 4-OH (X); 4-F (XI); 3,4-OCH3,OH (XII); 3,4,5-OCH3,OH,J (XIII); 3,4-OCH3,OCH3 (XIV); 2,4-Cl2 (XV); 3,4-Cl2 (XVI); 2,6-Cl2 (XVII); were prepared and characterized in an attempt to make available for testing a representative selection of hitherto unreported 4-hydroxyisophthalic acid derivatives. The new compounds in question were obtained in satisfactory yield by condensation of 4-hydroxyisophthalic acid hydrazide with the appropriate aldehydes. The prepared compounds were tested for their possible activity against Gram-positive (S. epidermidis, B. subtilis, B. anthracis) and Gram-negative bacteria (P. aeruginosa, B. melitensis, S. typhi O, S. typhi H, S. infantis, S. paratyphi B, E. coli Bb, E. coli 7075), and fungi (C. albicans, A. niger, S. cerevisiae). The "in vitro" antimicrobial assays were carried out using the paper disk technique (Kirby-Bauer modified). The influence of certain structural modifications on the antimicrobial activity was evaluated.  相似文献   

17.
The enzyme trypanothione reductase is a recognised drug target in trypanosomatids and has been used in the search of new compounds with potential activity against diseases such as leishmaniasis, Chagas disease and African trypanosomiasis. 8-Methoxy-naphtho [2,3-b] thiophen-4,9-quinone was selected in a screening of natural and synthetic compounds using an in vitro assay with the recombinant enzyme from Trypanosoma cruzi. Its mode of inhibition fits a non-competitive model with respect to the substrate (trypanothione) and to the co-factor (NADPH), with Ki-values of 5 and 3.6 M, respectively. When tested against human glutathione reductase, this compound did not display any significant inhibition at 100 M, indicating a good selectivity against the parasite enzyme.  相似文献   

18.
A series of possible metabolites--4-nitrosobiphenyl ether (4-NO), 4-hydroxylaminobiphenyl ether (4-NHOH), 4-aminobiphenyl ether (4-NH2), 4-hydroxyacetylaminobiphenyl ether (4-N(OH)Ac), 4-acetoxyacetylaminobiphenyl ether (4-N(OAc)Ac)involved in the toxic effects of 4-nitrobiphenyl ether (4-NO2) was synthesized and tested for mutagenic activity toward Salmonella typhimurium TA100 strain in the presence and the absence of liver homogenates of guinea pig treated with Kaneclor-500. 4-NO2, 4-NO and 4-NHOH showed direct-acting mutagenicity. 4-NO and 4-NHOH showed high mutagenic activity, while the mutagenic activity of 4-NO2 was very weak compared to 4-NO and 4-NHOH. 4-NO showed antimicrobial action at high concentrations. The other three compounds tested induced no mutation. Upon addition of NAD(P)H, the mutagenic activities of 4-NO and 4-NHOH were slightly enhanced, but no enhancement was observed by addition of NAD(P)+. Metabolic activation with guinea pig liver homogenates enhanced the mutagenic activities of 4-NO2 and 4-NO, and converted 4-NH2, 4-N(OH)Ac and 4-N(OAc)Ac to the product(s) responsible for the mutagenic activity. Addition of bis(p-nitrophenyl)phosphate, a deacetylase inhibitor, inhibited the mutagenic activities of 4-N(OH)Ac and 4-N(OAc)Ac by about 70% in the presence of NADPH and about 77% in the absence of NADPH. High performance liquid chromatography (HPLC) analysis of non-enzymatic conversion-products of 4-NHOH and 4-BO with and without NADPH indicated that 4-NHOH disappeared after 30 min of incubation and was converted completely to 4-NO without NADPH, while with NADPH, 4-NHOH disappeared very slowly and was detected even after 4 h of incubation. In the case of 4-NO, no decrease of 4-NO was observed without NADPH, while with NADPH 4-NO decreased quickly and a significant amount of 4-NHOH appeared. The mechanism of the NAD(P)H-dependent increase in mutagenicity is also discussed.  相似文献   

19.
M Yamaguchi  Y Hatefi 《Biochemistry》1989,28(14):6050-6056
The mitochondrial nicotinamide nucleotide transhydrogenase is a dimeric enzyme of monomer Mr 110,000. It is located in the inner mitochondrial membrane and catalyzes hydride ion transfer between NAD(H) and NADP(H) in a reaction that is coupled to proton translocation across the inner membrane. The amino acid sequence and the nucleotide binding sites of the enzyme have been determined [Yamaguchi, M., Hatefi, Y., Trach, K., & Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767; Wakabayashi, S., & Hatefi, Y. (1987) Biochem. Int. 15, 915-924]. N-Ethylmaleimide, as well as other sulfhydryl group modifiers, inhibits the transhydrogenase. The presence of NADP in the incubation mixture suppressed the inhibition rate by N-ethylmaleimide, and the presence of NADPH greatly increased it. NAD and NADH had little or no effect. The NADPH effect was concentration dependent and saturable, with a half-maximal NADPH concentration effect close to the Km of the enzyme for NADPH. Study of the effect of pH on the N-ethylmaleimide inhibition rate showed that NADPH binding by the enzyme lowers the apparent pKa of the N-ethylmaleimide-sensitive group by 0.4 of a pH unit and NADP binding raises this pKa by 0.4 of a pH unit, thus providing a rationale for the effects of NADP and NADPH on the N-ethylmaleimide inhibition rate. With the use of N-[3H]ethylmaleimide, the modified sulfhydryl group involved in the NADP(H)-modulated inhibition of the transhydrogenase was identified as that belonging to Cys-893, which is located 113 residues upstream of the tyrosyl residue modified by [p-(fluorosulfonyl)benzoyl]-5'-adenosine at the putative NADP(H) binding site of the enzyme (see above references).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of the anti-neoplastic ether lipid ET-18-OCH3 and some structural homologues on the activity of protein kinase C alpha (PKC alpha) were studied and compared with the effects the same had on the activity of PKC epsilon. ET-18-OCH3 progressively inhibited the activity of PKC alpha as the concentration was increased up to 30 mol% of the total lipid, above which the effect was one of activation. The experiments carried out with the homologues showed that the methoxy group bound at the sn-2 position of the glycerol of ET-18-OCH3 is essential for both the initial inhibitory effect and the subsequent activation effect. On the other hand, variations in the type of bond linking substitutions in the sn-1 position, ether or ester, do not seem to play an important role in determining the activity of the enzyme. The effects were different on PKC epsilon since ET-18-OCH3 had a triphasic effect, activating the enzyme at low concentrations, inhibiting it at slightly higher concentrations and then activating it again at higher concentrations. In this case, when the homologues were used, it was observed that the presence of the methoxy group linked to the sn-2 position of glycerol and the type of bond linking substitutions to the sn-1 position were important for activating the enzyme, so that only homologues with ester bonds as LPC and PAPC were able to induce the initial activation step in a way similar to ET-18-OCH3. Substitution of the phosphocholine group of ET-18-OCH3 by phosphoserine led to a greater activation of PKC alpha, an effect that comes from the Ca(2+)-phospholipid binding site probably because of the specific interaction of this site with the phosphoserine group. The action of ET-18-OCH3 and its homologues, as demonstrated in this paper, may permit the selective inhibition or activation of PKC alpha and PKC epsilon by using the most suitable range of concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号