首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P G McGuire  N W Seeds 《Neuron》1990,4(4):633-642
The ability of differentiating sensory neurons to remodel a fibronectin substratum was examined. During the early stages of neurite outgrowth, fibronectin was cleared from areas beneath the neuronal soma and processes. The removal of fibronectin occurred in the presence and absence of plasminogen and was associated with the release of fibronectin fragments into the culture medium. The degradation of fibronectin was dependent upon neuronal contact with the substratum. Extraction of cells with the nonionic detergent Triton X-114 identified plasminogen activator and plasmin associated with the cell surface. These findings suggest that the plasminogen activator/plasmin system may play an important role in the interaction of differentiating sensory neurons with the extracellular matrix during axonal outgrowth.  相似文献   

2.
Madin-Darby canine kidney (MDCK) cells were previously shown to have few or no plasma membrane insulin binding sites (Hofmann et al: J Biol Chem 258:11774, 1983]. Accordingly, neither insulin-stimulated incorporation of [14C]glucose into glycogen, nor insulin-induced uptake of radiolabeled alpha-aminoisobutyrate ([3H]AIB) could be demonstrated. To probe for receptors, MDCK cultures were surface-labeled with Na125I or were labeled with [35S]methionine. When solubilized cells were immunoprecipitated with sera containing antibodies to the insulin receptor, and immunoprecipitates were analyzed on SDS-gel electrophoresis, no evidence for insulin receptor components was found. Also, when intact MDCK cells wee incubated first with serum containing antibodies to the insulin receptor and then with 125I-protein A, no radiolabeling of insulin receptors occurred. Various agents reported to have insulin-like activity were tested on MDCK cells. The insulinomimetic lectins concanavalin A and wheat germ agglutinin as well as hydrogen peroxide enhanced incorporation of [14C]glucose into glycogen and induced stimulated [3H]AIB uptake, whereas trypsin, vanadate, and serum containing antibodies to the insulin receptor were without effects. Altogether, these results showed that MDCK cells had few or no insulin receptors and were correspondingly insulin-insensitive. However, since insulin-associated responses could be elicited by some insulin mimickers, the post-receptor limb of response in MDCK cells was apparently intact.  相似文献   

3.
Using ELISAs for B-50/GAP43 and neurofilament (NF), we tested ACTH(1–24), -MSH, ACTH(4–10), and an ACTH(4–9) analogue (ORG2766) for their ability to induce sprouting and neuritogenesis from spinal and sensory neurons. Dissociated fetal rat spinal cord neurons or neonatal rat dorsal root ganglion (DRG) cells were cultured with peptide and assayed after 24, 48, or 96 h. In spinal neurons, -MSH and ACTH(1–24) induced the expression of B-50 dose dependently. After 24 h -MSH had a stimulatory effect (from 10 nM onwards), with a maximum at 100 μM (36% increase). After 96 h the maximal effect of 100 μM -MSH on B-50/GAP43 was lower (19%). ACTH(1–24) (100 μM) stimulated B-50/GAP43 by 19%. Neurofilament levels (96 h) were elevated maximally by 64% at 100 μM -MSH. In DRG neurons a bell-shaped dose-response curve was found for -MSH, the maximal effect being observed after 48 h at 100 nM: 54% for B-50/GAP43 and 22% for NF. In both culture systems neither ACTH(4–10) nor ORG2766 was effective. We conclude that -MSH stimulates the expression of B-50/GAP43 (sprouting) and the formation of NF (neurite elongation) and may therefore be considered a neurotrophic factor.  相似文献   

4.
Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25–30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Formation of an axon is the first morphological evidence of neuronal polarization, visible as a profound outgrowth of the axon compared with sibling neurites. One unsolved question on the mechanism of axon formation is the role of axon outgrowth in axon specification. This question was difficult to assess, because neurons freely extend their neurites in a conventional culture. Here, we leveraged surface nano/micro‐modification techniques to fabricate a template substrate for constraining neurite lengths of cultured neurons. Using the template, we asked (i) Do neurons polarize even if all neurites cannot grow sufficiently long? (ii) Would the neurite be fated to become an axon if only one was allowed to grow long? A pattern with symmetrical short paths (20 μm) was used to address the former question, and an asymmetrical pattern with one path extended to 100 μm for the latter. Axon formation was evaluated by tau‐1/MAP2 immunostaining and live‐cell imaging of constitutively‐active kinesin‐1. We found that (1) neurons cannot polarize when extension of all neurites is restricted and that (2) when only a single neurite is permitted to grow long, neurons polarize and the longest neurite becomes the axon. These results provide clear evidence that axon outgrowth is required for its specification.  相似文献   

6.
1. The effects of acetylcholine (ACh) on the soma of cultured ventrocaudal sensory neurons from the pleural ganglia of Aplysia kurodai were characterized. 2. Whole-cell recording was used for current and voltage clamping. ACh and other drugs were microapplied to the membranes of the cultured neurons. 3. Microapplication of ACh induced an outward current mediated by a conductance increase. No desensitization to repeated applications of ACh was detected. The threshold was 10(-7) M and the maximum response was at 10(-5) M. 4. The reversal potential in normal seawater is -80 mV, close to the K+ equilibrium potential. Increasing [K+]0 shifted the reversal potential by the amount predicted by the Nernst equation. Altering [Cl-]0 did not affect the reversal potential. Thus ACh opens a potassium channel in these sensory neurons and may act as a neurotransmitter on those neurons. 5. Atropine and d-tubocurarine partially blocked the ACh response. Hexamethonium had no obvious effect on this response. Tetraethylammonium reduced the response to 22% of control. Carbamylcholine and arecoline induced outward currents that were 71 and 12%, respectively, of the response to ACh. Nicotine and muscarine had almost no effect. 6. The ACh response was reduced by prior application of serotonin (5HT). The ACh response was also reduced by bath-applied 5HT, forskolin, and isobutylmethylxanthine. These data suggest that ACh activates an "S-like" channel in the ventrocaudal sensory neurons.  相似文献   

7.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   

8.
The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine. In addition, AChE is thought to play several 'non-classical' roles that do not require catalytic function. Most prominent among these is facilitation of neurite growth. Here, we report that the zebrafish zieharmonika (zim) locus encodes AChE. We show that one mutant zim allele is caused by a pre-mature stop codon, resulting in a truncated protein that lacks both the catalytic site and the carboxy-terminal neuritogenic domain. To explore the 'non-classical' role of AChE, we examined embryos mutant for this allele. In contrast to previous results using a catalytic-inactive allele, our analysis demonstrates that AChE is dispensable for muscle fiber development and Rohon-Beard sensory neuron growth and survival. Moreover, we show that in the absence of AChE, acetylcholine receptor clusters at neuromuscular junctions initially assemble, but that these clusters are not maintained. Taken together, our results demonstrate that AChE is dispensable for its proposed non-classical roles in muscle fiber formation and sensory neuron development, but is crucial for regulating the stability of neuromuscular synapses.  相似文献   

9.
Objective: To identify simple methods to estimate the degree of insulin resistance. Research Methods and Procedures: The performance of a wide range of fasting‐based index estimates of insulin sensitivity was compared by receiver operating characteristic analysis (area under curves and their 95% confidence intervals) against the M value from euglycemic insulin clamp studies collected in the San Antonio (non‐Hispanic whites and Hispanic residents of San Antonio, TX) and European Group for the Study of Insulin Resistance (non‐diabetic white Europeans) databases (n = 638). Results: Insulin resistance differed substantially between lean (BMI < 25 kg/m2), overweight or obese (BMI ≥ 25 kg/m2), and type 2 diabetic individuals. Estimates of insulin resistance were, therefore, assessed in each group separately. In the overweight and obese subgroup (n = 302), the receiver operating characteristic performance of fasting‐based indices varied from 0.72 (0.62 to 0.82), in the case of the insulin/glucose ratio, to 0.80 (0.72 to 0.88) in the case of Belfiore free fatty acids. One superior method could not be identified; the confidence intervals overlapped, and no statistically significant differences emerged. All indices performed better when using the whole study population, with fasting plasma insulin, homeostatic model assessment, insulin/glucose ratio, quantitative insulin sensitivity check index, glucose/insulin ratio, Belfiore glycemia, revised quantitative insulin sensitivity check index, McAuley index, and Belfiore free fatty acids showing area under curves of 0.83, 0.90, 0.66, 0.90, 0.66, 0.90, 0.85, 0.83, and 0.86, respectively, because of the inclusion of very insulin sensitive (lean) and very insulin resistant cases (diabetic subjects). Discussion: In conclusion, a superior fasting‐based index estimate to distinguish between the presence and absence of insulin resistance in overweight and obesity could not be identified despite the use of the large datasets.  相似文献   

10.
Now diabetes is growing to be a health problems globally. However, its specific pathogenesis still needs further exploration. Here we showed that miR-15b was upregulated in the palmitate-induced HepG2 cells and livers of hyperglycemic mice. At the same time, we confirmed that the insulin receptor was a direct target of miR-15b. Then we found that the manipulation of miR-15b expression level could affect the insulin signaling pathway of HepG2 cells and the inhibition of miR-15b in liver of ob/ob mice can improve insulin sensitivity of mice. Furthermore, our study demonstrated that palmitate could upregulate the expression of miR-15b by activating PPARα. Our findings established PPARα-responsive miR-15b as a critical regulator of hepatic insulin signaling, thus serving as a new potential therapeutic target for diabetes.  相似文献   

11.
Cyclic AMP is the primary second messenger mediating odorant signal transduction in mammals. A number of studies indicate that cyclic GMP is also involved in a variety of other olfactory signal transduction processes, including adaptation, neuronal development, and long-term cellular responses in the setting of odorant stimulation. However, the mechanisms that control the production and degradation of cGMP in olfactory sensory neurons (OSNs) remain unclear. Here, we investigate these mechanisms using primary cultures of OSNs. We demonstrate that odorants increase cGMP levels in intact OSNs in vitro. Different from the rapid and transient cAMP responses to odorants, the cGMP elevation is both delayed and sustained. Inhibition of soluble guanylyl cyclase and heme oxygenase blocks these odorant-induced cGMP increases, whereas inhibition of cGMP PDEs (phosphodiesterases) increases this response. cGMP PDE activity is increased by odorant stimulation, and is sensitive to both ambient calcium and cAMP concentrations. Calcium stimulates cGMP PDE activity, whereas cAMP and protein kinase A appears to inhibit it. These data demonstrate a mechanism by which odorant stimulation may regulate cGMP levels through the modulation of cAMP and calcium level in OSNs. Such interactions between odorants and second messenger systems may be important to the integration of immediate and long-term responses in the setting odorant stimulation.  相似文献   

12.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

13.
To determine the influence that an appropriate target cell has on the axonal structure of a presynaptic neuron in vivo, we examined the morphologies of individual Aplysia sensory neurons in dissociated cell culture in the presence or absence of identified target motor neurons. We find that an appropriate target, the motor cell L7, regulates the morphological differentiation of the presynaptic sensory neurons in two ways: the target induces the axons of the sensory neurons to develop a more elaborate structure and to form active zones, and the target guides the outgrowth of the sensory neurons. The influence of the appropriate target, L7, on the morphological differentiation of sensory neurons appears to be related to the formation of chemical synaptic connections between the sensory neurons and L7, since sensory neurons co-cultured with an inappropriate target motor neuron do not exhibit a comparable elaboration of their axonal processes.  相似文献   

14.
Thy-1 is highly expressed in the mammalian nervous system. Our previous study showed that addition of anti-Thy-1 antibody to cultured dorsal root ganglionic (DRG) neurons promotes neurite outgrowth. In this study, we identified a novel signaling pathway mediating this event. Treatment with function-blocking anti-Thy-1 antibodies enhanced neurite outgrowth of DRG neurons in terms of total neurite length, longest neurite length, and total neurite branching points. To elucidate the possible signal transduction pathway involved, activation of kinases was evaluated by Western blotting. Transient phosphorylation of protein kinase A (PKA) and mitogen-activated kinase kinase (MEK) was induced after 15 min of anti-Thy-1 antibody treatment. Pretreatment with a PKA inhibitor (PKI) or an MEK inhibitor, PD98059, significantly decreased the neurite outgrowth response triggered by anti-Thy-1 antibody, indicating the involvement of both kinases. In addition, anti-Thy-1 antibody treatment also induced transient phosphorylation of cyclic AMP-response element-binding protein (CREB) and this effect was also blocked by a PKI or PD98059. Furthermore, the fact that PKI abolished anti-Thy-1 antibody-induced MEK phosphorylation showed that PKA acts upstream of the MEK-CREB cascade. In summary, the PKA-MEK-CREB pathway is a new pathway involved in the neurite outgrowth-promoting effect of anti-Thy-1 antibody.  相似文献   

15.
Features of insulin binding to trophoblast plasma membranes were studied in six normal pregnant women (NP), six overt diabetes (ODP) and six poorly controlled glycemic gestational patients (PCDP) i.e. women who did not strictly follow the management of diabetes mellitus during pregnancy. A decreased maximum specific insulin receptor binding per 0.1 mg membrane protein in placenta from PCDP (12%) was found comparing with that from ODP or NP (17.5% and 36.2%, respectively, P<0.01), The insulin binding in PCDP declined at a faster rate until it reached minimum when studied at a higher temperature (25–37°C). The binding equilibrium was likewise attained faster at this temperature than that at lower temperature of 4°C for all studied groups.The insulin receptor binding in all studied groups was pH dependent. The maximum binding in ODP and PCDP groups was attained at pH 7.8 while for NP maximum binding was at pH 7.4. The competitive dinding assay was carried out with 14 concentrations of unlabelled insulin and the half maximal displacement of125I-insulin was at 8×10–9 M, 6×10–9 M and 4×10–9 M for NP, ODP and PCDP, respectively (P<0.05) suggesting the differences in the effect of glycemic control on the insulin binding. Furthermore the binding yielded curvilinear Scatchard plots with the apparent affinity of the receptors being affected in the ODP and PCDP groups.The molecular characteristics of the receptors in the diabetic patients as revealed by the cross-linking technique used in this study did not reveal any changes in the subunit structures when compared with normals except that the125I-insulin bound as shown by the band intensity was much less in PCDP. These findings indicate that control of hyperglycemia could optimize the outcome of insulin receptor function during diabetic pregnancy.  相似文献   

16.
胰岛素抵抗(insulin resistance,IR)是指外周组织对胰岛素的反应敏感性降低,是肝脏疾病和心血管病发生的共同基础,常常是高脂血症和2型糖尿病发病的前奏.过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)属于核受体超家族的成员.PPARs激动剂可通过多种途径改善胰岛素敏感性,例如调节糖脂代谢、抗炎作用以及间接地改善氧化应激状态.这篇综述主要是回顾IR的病理机制及其治疗靶点:PPARα,δ和γ,并阐明针对此类靶点的胰岛素增敏药物的信号转导通路.  相似文献   

17.
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix in the CNS that inhibit axonal regeneration after CNS injury. Signaling pathways in neurons triggered by CSPGs are still largely unknown. In this study, using well-characterized in vitro assays for neurite outgrowth and neurite guidance, we demonstrate a major role for myosin II in the response of neurons to CSPGs. We found that the phosphorylation of myosin II regulatory light chains is increased by CSPGs. Specific inhibition of myosin II activity with blebbistatin allows growing neurites to cross onto CSPG-rich areas and increases the length of neurites of neurons growing on CSPGs. Using specific gene knockdown, we demonstrate selective roles for myosin IIA and IIB in these processes. Time lapse microscopy and immunocytochemistry demonstrated that CSPGs also inhibit cell adhesion and cell spreading. Inhibition of myosin II selectively accelerated neurite initiation without altering cell adhesion and spreading on CSPGs.  相似文献   

18.
Objective: Apelin-13 is an endogenous peptide with potential analgesic action, although the sites of its analgesic effects remain uncertain and the results are even controversial with regard to its pain modulating action. This study evaluated the possible pain-modulating action of peripherally administered apelin-13 using heat-induced, withdrawal latency to the thermal stimuli, acute pain model in mice. Involvement of peripheral mechanisms was tested, by using the intracellular calcium concentrations as a key signal for nociceptive transmission, in cultured rat dorsal root ganglion (DRG) neurons. Methods: DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium-sensitive dye Fura-2 acetoxymethyl ester (1?µM). Intracellular calcium responses in individual DRG neurons were quantified by ratiometric calcium imaging technique. Results: Peripheral injection of a single dose of apelin-13 (100?mg/kg and 300?mg/kg) significantly decreases the latency to painful stimuli in a dose and time-dependent manner (p?<?0.01, p?<?0.05, respectively, n?=?8 each). Apelin-13 (0.1?µM and 1?µM) did not produce a significant effect on cytoplasmic Ca2+ ([Ca2+]i) responses, evoked by membrane depolarization, in cultured rat DRG neurons. Conclusion: Together these results indicate that apelin-13 can cause increased pain sensitivity after peripheral administration, but this effect does not involve calcium mediated signaling in primary sensory neurons.  相似文献   

19.
20.
Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H2O2). Shh alleviated the apoptosis rate of H2O2-induced neurons. Shh also increased neuritogenesis injuried by H2O2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H2O2. In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H2O2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号