共查询到10条相似文献,搜索用时 78 毫秒
1.
IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma 总被引:6,自引:0,他引:6
Slomiany MG Black LA Kibbey MM Day TA Rosenzweig SA 《Biochemical and biophysical research communications》2006,342(3):851-858
Elevated vascular endothelial growth factor (VEGF) levels correlate with increased progression and poor prognosis of head and neck squamous cell carcinomas (HNSCC). VEGF expression is regulated by hypoxia and cytokines, including insulin-like growth factor-1 (IGF-1). In this report, we examined IGF-1 signaling and VEGF expression in SCC-9 cells. IGF-1 and the chemical hypoxia agent, cobalt chloride, each stimulated VEGF secretion and VEGF promoter activation. Cobalt chloride increased Hif-1alpha protein levels and HIF-1 dependent activation of the enolase promoter. IGF-1 increased these parameters only in the presence of cobalt chloride. IGF-1 stimulated PI-3K/Akt and Erk/MAPK pathways in SCC-9 cells, each contributing to Hif-1alpha expression and VEGF secretion. SCC-9 cells express the VEGF receptors Flk-1 and neuropilin-1, with VEGF treatment increasing VEGF promoter activity and VEGF secretion that was attenuated by the Flk-1 tyrosine kinase inhibitor, ZM 323881. These results demonstrate the presence of an IGF-1 regulated VEGF autocrine loop in HNSCC. 相似文献
2.
Regulation of retinal capillary cells by basic fibroblast growth factor, vascular endothelial growth factor, and hypoxia 总被引:7,自引:0,他引:7
Yan Q Li Y Hendrickson A Sage EH 《In vitro cellular & developmental biology. Animal》2001,37(1):45-49
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) feature prominently in retinal neovascular diseases. Although the role of VEGF in retinal angiogenesis is well established, the importance of bFGF in this process requires further clarification. This study was undertaken to investigate the responses of retinal capillary cells (endothelial cells and pericytes) to bFGF under hypoxic conditions, as well as the potentially synergistic effects of bFGF and VEGF on the proliferation and cord formation of retinal endothelial cells. Cell proliferation was determined by cell number and by 3H-thymidine incorporation. Cord formation was assessed in three-dimensional gels of collagen type I. VEGF and bFGF increased 3H-thymidine incorporation by both cell types, an effect that was more pronounced in a hypoxic environment. Moreover, the proliferation of pericytes was stimulated to a greater extent by bFGF relative to VEGF. Endothelial migration in collagen gels, however, was induced more effectively by VEGF than by bFGF. A synergistic effect of VEGF and bFGF on cell invasion was observed in the collagen gel assay. VEGF and bFGF each augment proliferation of these cells, especially under hypoxia. We thus propose that these two cytokines have a synergistic effect at several stages of angiogenesis in the retina. 相似文献
3.
4.
YAN Xiyun TANG Jian WU Xiaoping WANG Fengcai LI Jiansheng YANG Dongling 《中国科学C辑(英文版)》2000,43(3):232-238
Using antibody phage display technique,a human single chain antibody to vascular endothelial growth factor (VEGF) has been cloned.The antibody expression reached 45% of the total bacterial proteins.The purification and refolding of the antibody were completed in one step by using gel filtration chromatograph.ELISA analysis showed that the antibody not only specifically bound to human VEGF,but also competitively inhibited VEGF reacting with its receptors.In order to raise the affinity of the single chain antibody,its heavy chain variable region was randomly mutated using error-prone PCR and an antibody mutant library was constructed,from which a mutant with higher affinity was screened out.The three-dimensional structure and binding affinity of wild type and mutant antibody were compared.Our study provided a potential reagent for tumor angiogenic therapy and a significant model for antibody high-level expression and affinity maturation. 相似文献
5.
6.
The present study was conducted to demonstrate of the immunohistochemical localization of vascular endothelial growth factor (VEGF) and its receptors (flt1/fms, flk1/KDR and flt4) as well as vascular endothelial growth inhibitor (VEGI) and to determine the correlation of VEGF and its receptors and VEGI with serum sex steroids (estrogen and progesterone) in the bovine uterus during the sexual cycle. The stage of the estrous cycle in 30 Holstein cattle was assessed based on the gross and histological appearance of the ovaries and uterus and on blood steroid hormone levels. Tissue samples obtained from the uterus were fixed in 10% formaldehyde for routine histological processing. During both follicular and luteal phases, positive cytoplasmic and membrane staining was achieved for VEGF and its receptors (flt1/fms, flk1/KDR and flt4) as well as VEGI in the luminal and glandular epithelial cells, the connective tissue and smooth muscle cells, and the vascular endothelial cells and smooth muscle cells in the uterus. The intensity, proportional and total scores determined for VEGF and its receptors (flt1/fms and flt4) as well as VEGI were greater in the luminal and glandular epithelial cells compared to the connective tissue and smooth muscle cells (P < 0.05). Furthermore, the number and intensity of the flk1/KDR positive cells were greater among the connective tissue cells compared to the luminal and glandular epithelial cells (P < 0.05). As a result, it was determined that the expression of VEGF and its receptors as well as VEGI in the bovine uterus during the follicular and luteal phases varied with different cell types. This suggests that depending on the stage of the sexual cycle, these factors may mediate the establishment of an appropriate environment for the nutritional supply and implantation of the embryo primarily due to the stimulation of angiogenesis but also through the increase in the secretory activity of the epithelial cells in the uterus. Furthermore, this indicates that ovarian steroid hormones play a significant role in regulating the expression of VEGF and its receptors as well as VEGI. 相似文献
7.
Rolny C Lu L Agren N Nilsson I Roe C Webb GC Welsh M 《Experimental cell research》2005,308(2):381-393
The mechanisms controlling blood vessel formation during early embryonal development have only partly been elucidated. Shb is an adaptor protein previously implicated in the angiogenic response to vascular endothelial growth factor (VEGF). To elucidate a possible role of Shb in embryonic vascular development, wild-type and SH2 domain mutated (R522K) Shb were overexpressed in murine embryonic stem (ES) cells. Embryoid bodies (EBs) differentiating from Shb-overexpressing ES cells in vitro were stained for CD31 or VEGFR-2 to visualize the formation of vascular structures. We found that Shb promotes the outgrowth of blood vessels in EBs both in the absence and presence of growth factors. This response may be the consequence of an increased number of VEGFR-2 positive cells at an early stage of EB development, a finding corroborated by both immunostaining and real-time RT-PCR. In addition, Shb overexpression upregulated the expression of PDGFR-beta, CD31, CD41 and Tal1. Cells co-expressing VEGFR-2 and PDGFR-beta were commonly observed when Shb was overexpressed and inhibition of PDGF-BB signaling reduced the amount of VEGFR-2 mRNA under these conditions. EBs expressing the Shb R522K-mutant did not form vascular structures. Microarray analysis of VEGFR-2/CD31 positive cells after 6 days of differentiation revealed numerous changes of expression of genes relating to an endothelial/hematopoietic phenotype in response to Shb overexpression. The findings suggest that Shb may play a crucial role during early ES cell differentiation to vascular structures by transducing VEGFR-2 and PDGFR-beta signals. 相似文献
8.
Dong Geon Kim Younggeon Jin Juyoun Jin Heekyoung Yang Kyeung Min Joo Weon Sup Lee Sang Ryeol Shim Sung-Woo Kim Jinsang Yoo Sang Hoon Lee Jin-San Yoo Do-Hyun Nam 《MABS-AUSTIN》2015,7(6):1195-1204
Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment. 相似文献
9.
Rem I. Sukernik Sergey V. Lemza Tatyana M. Karaphet Ludmila P. Osipova 《American journal of physical anthropology》1981,55(1):121-128
Phenotype and allelic frequencies for ABO, MNSs, P, Rh, Kell, Duffy, and Diego blood groups, as well as for transferrins (Tf), haptoglobins (Hp), phosphoglucomutase 1 (PGM1), adenylate kinase (AK), 6-phosphogluconate dehydrogenase (PGD), and acid phosphatase (AcP) are described in 9–10 adjoining populations of Reindeer Chukchi. Additionally, one of three presently existing territorial subgroups of Siberian Eskimos was studied. The total sample size ranges from 931 to 1,066 in Chukchi, and from 99 to 102 in Eskimos, depending on the genetic system studied. Substantially reduced samples for Kidd and ABO secretion were investigated solely in the Reindeer Chukchi. Significant heterogeneity of allelic frequencies has been observed among Chukchi populations (χ = 378.47, P < 0.001). Summed genetic heterogeneity between Reindeer Chukchi and Siberian Eskimos was also found to be highly significant (χ = 186.54, P < 0.001). Both groups can be readily discriminated with only four outliers: NS , P1, R1, and Pa. Random genetic drift is suggested to be responsible for a large proportion of heterogeneity of allelic frequencies at the MNSs, P, and Rh blood-group system sites both among the Chukchi and Eskimos. Conversely, stabilizing selection is assumed as the principal agent maintaining homogeneous allelic frequencies at the AcP locus within the Chukchi subdivisions, whereas disruptive selection may be considered as a major factor leading to different pa frequencies between Chukchi and Eskimos. 相似文献
10.
Hepatic stimulator substance (HSS), a partially purified extract of weanling or regenerating adult rat liver, is an organ-specific stimulator of liver growth in vivo and in vitro. The HTC hepatoma cell line is particularly responsive to HSS. The present experiments show that HSS will stimulate HTC cells in the complete absence of serum, although graded doses of fetal cal serum (FCS), from 0.1 to 5.0%, will increase the degree of stimulation in a dose-dependent manner. In contrast, when HSS is absent, increasing doses of FCS above 0.5% inhibit DNA synthesis. Much of this inhibition is removed by prior dialysis of the FCS and maximum enhancement of the HSS-induced stimulation occurs with only 0.1–0.5% of the dialysed FCS. Sera from older animals have less or even negative effect. Evidence is presented to show that the enhanced stimulation by HSS in the presence of serum is not due to insulin, glucagon, epidermal growth factor (EGF), or platelet derived growth factor (PDGF) and that HSS does not act via a shared receptor for one of these hormones. These experiments provide further evidence that HSS is a unique stimulator of liver growth and lend support to a model of organ-specific growth control. 相似文献