首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increasing the number of mapped genes will facilitate (1) the identification of potential candidate genes for a trait of interest within quantitative trait loci regions and (2) comparative mapping. The metabolic activities of the liver are essential for providing fuel to peripheral organs, for regulation of amino acid, carbohydrate and lipid metabolism and for homoeostasis of vitamins, minerals and electrolytes. We aimed to identify and map genes coding for enzymes active in the liver by somatic cell genetics in order to contribute to the improvement of the porcine gene map. We mapped 28 genes of hepatic metabolic pathways including six genes whose locations could be confirmed and 22 new assignments. Localization information in human was available for all but one gene. In total 24 genes were assigned to in the expected chromosomal regions on the basis of the currently available information on the comparative human and pig map while for four genes our results suggest a new correspondence or extended regions of conservation between porcine and human chromosomes.  相似文献   

3.
4.
Human FKBP12 and FKBP13 are encoded by distinct genes designated FKBP1 and FKBP2, respectively. Human FKBP1 was previously characterized. The characterization of human FKBP2 is described. FKBP2 is three kb in length and contains six exons. Fluorescence in situ hybridization of FKBP1 and FKBP2 genomic probes to metaphase chromosomes localized FKBP1 to human chromosome 20 band p13 and FKBP2 to human chromosome 11 band q13.1-q13.3.  相似文献   

5.
6.
7.
The chromosomal location of representative members of the type I and type II subfamilies of the cytokeratin multigene family was determined using specific cDNA probes in Southern blot hybridization with DNA from somatic cell hybrids. Our results show that the gene encoding human type II cytokeratin 4 resides on chromosome 12 and that encoding type I cytokeratin 15 is located on chromosome 17. The results indicate that cytokeratins are not concentrated in only one cluster. The possibility of the existence of separate type I and type II cytokeratin gene clusters is discussed.  相似文献   

8.
In mammals, AMP-activated protein kinase (AMPK) is involved in the regulation of cellular energy homeostasis and, on the whole animal level, in regulating energy balance and food intake. In this paper, the relative synonymous codon use frequency of 40 AMPK family genes from seven mammal species (Bos taurus, Homo sapiens, Macaca mulatta, Mus musculus, Pan troglodytes, Rattus norvegicus, Sus scrofa) were analyzed using correspondence analysis and hierarchical cluster method. The result suggests that gene function is the dominant factor that determines codon usage bias in AMPK family genes, while species is a minor factor that determines further difference in codon usage bias for genes with similar functions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Chromosomal assignments of genes for rat glutathione S-transferase Ya (GSTA1) and Yc subunits (GSTA2) were performed by Southern blot analyses of somatic cell hybrid DNAs.GSTA1 and GSTA2 were assigned to rat chromosomes 8 and 9, respectively.  相似文献   

10.
11.
12.
The chromosomal locations of the genes in common wheat that encode the five histones and five members of the HBP (histone gene-binding protein)-1 family were determined by hybridizing their cloned DNAs to genomic DNAs of nullitetrasomic and telosomic lines of common wheat, Triticum aestivum cv. Chinese Spring. The H1 and H2a genes are located on different sets of homoeologous chromosomes or chromosome arms, namely, 5A, 5B and 5D, and 2AS, 2BS and 2DS, respectively. Genes for the other histones, H2b, H3 and H4, are found in high copy number and are dispersed among a large number of chromosomes. The genes for all members of the HBP-1 family are present in small copy numbers. Those for HBP-1a(1) are located on six chromosome arms, 3BL, 5AL, 5DL, 6AL, 6BS and 7DL, whereas those for each HBP-1a(c14), 1a(17), 1b(c1), and 1b(c38) are on a single set of homoeologous chromosome arms; 4AS, 4BL, 4DL; 6AS, 6BS, 6DS; 3AL, 3BL, 3DL; and 3AS, 3BS, 3DS, respectively. The genes for histones H1 and H2a, and for all members of the HBP-1 family except HBP-1a(1) are assumed to have different phylogenetic origins. The genes for histone 2a and HBP-1a(17) are located in the RFLP maps of chromosomes 2B and 6A, respectively. Gene symbols are proposed for all genes whose chromosomal locations have been determined.  相似文献   

13.
14.
The physiologic and behavioral effects of pharmacologic agents that interfere with the transport of monoamine neurotransmitters into vesicles suggest that vesicular amine transport may contribute to human neuropsychiatric disease. To determine whether an alteration in the genes that encode vesicular amine transport contributes to the inherited component of these disorders, we have isolated a human cDNA for the brain transporter and localized the human vesicular amine transporter genes. The human brain synaptic vesicle amine transporter (SVAT) shows unexpected conservation with rat SVAT in the regions that diverge extensively between rat SVAT and the rat adrenal chromaffin granule amine transporter (CGAT). Using the cloned sequences with a panel of mouse-human hybrids and in situ hybridization for regional localization, the adrenal CGAT gene (or VAT1) maps to human chromosome 8p21.3 and the brain SVAT gene (or VAT2) maps to chromosome 10q25. Both of these sites occur very close to if not within previously described deletions that produce severe but viable phenotypes.  相似文献   

15.
Taylor, M. W. (Stanford University, Stanford, Calif.), and C. Yanofsky. Chromosomal relocation of prophage-associated bacterial genes. J. Bacteriol. 91:1469-1476. 1966.-Two distinguishable colony types, rough-edged and smooth-edged, were observed when tryptophan auxotrophs of Escherichia coli were transformed to tryptophan independence with DNA from the hybrid nondefective transducing phage i(lambda)h(phi80)T(1) (S)tryp A(+)B(+), and with the helper phage lambdai(434). P1kc transduction experiments with cells of the two types of colonies as genetic donors showed that the i(lambda)h(phi80)T(1) (S)tryp A(+)B(+) prophage was located at different regions of the E. coli chromosome. In cells of rough-edged colonies, the prophage was linked to the tryp-cys region, its normal location, whereas in cells of smooth-edged colonies the prophage was associated with the gal region. When transformation experiments were performed with a T(1) (R)tryp(-) deletion mutant as recipient, and phage lambdai(434) as helper, prophage localization was only detected at the gal region. Localization of (lambda)h(phi80)T(1) (S)tryp A(+)B(+) prophage near gal does not appear to be due to the formation of a recombinant phage carrying tryp A(+)B(+), but is due to some type of interaction between the genomes of i(lambda)h(phi80)T(1) (S)tryp A(+)B(+) and the helper phage. When conditions comparable to those used in transformation studies were employed in transduction experiments, including the use of helper phage, two classes of transductants with either cys or gal linkage were also observed. To examine whether the location of the prophage on the E. coli chromosome had any effect on the ability of the prophage-associated tryp A(+) and tryp B(+) genes to function or respond to different repression conditions, specific activities of the A and B subunits of tryptophan synthetase specified by the phage genome were measured. Similar values were obtained regardless of the location of the prophage-associated tryp genes. Furthermore, the prophage-associated tryp genes, free from their normal operator region, permitted enzyme formation which was unaffected by repression or derepression conditions.  相似文献   

16.
Chromosomal regions harboring genes for the work to femur failure in mice   总被引:1,自引:0,他引:1  
The work to failure is defined as the maximum energy bone can absorb before breaking, and therefore is a direct test of the risk of fracture. To determine the genetic loci influencing work to failure, we have performed a high density genome-wide scan in 633 (MRL × SJL) F2 female mice. Five loci (P <0.005) with significant effects on work to failure were found on chromosomes 2, 7, 8, 9, and X, which collectively explained around 20% variance of work to femur failure in F2 mice. Of those, only the QTL on chromosome 9 was concordant with bone mineral density (BMD) QTLs. Eight significant interactions (P <0.01) between marker loci were identified, which accounted for an equivalent amount of F2 variance (23%) to combined single QTL effects. Our results demonstrate that most of the genetic loci regulating work to failure are different from those for BMD in the 7-week-old female mice. If this is also true in humans, this finding will challenge the predictive value of BMD for the risk of fracture. Electronic Publication  相似文献   

17.
Banded chromosomes of five species of testudinid turtles (Geochelone pardalis, G. elongata, G. elephantopus, Gopherus berlandieri, and G. polyphemus) reveal little variation within either genus, although there are differences in amount and distribution of heterochromatin between Geochelone pardalis and G. elongata. The chromosomal position and size of the nucleolar-organizer region differs between species of the two genera.Comparisons of standard karyotypes of these species and Malacochersus tornieri with data in the literature on other tortoises show a diploid number of 52 characterizes the family. These data are consistent with those for other families which show turtles are karyotypically conservative. G-banded chromosomes of Geochelone are identical to those of Chinemys reevesi, a karyotypically primitive batagurine emydid, supporting a derivation of the tortoises from a batagurine ancestor.  相似文献   

18.
19.
The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O. grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号