首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Unconjugated mAbs have emerged as useful cancer therapeutics. Ab-dependent cellular cytotoxicity (ADCC) is believed to be a major antitumor mechanism of some anticancer Abs. However, the factors that regulate the magnitude of ADCC are incompletely understood. In this study, we described the relationship between Ab affinity and ADCC. A series of human IgG1 isotype Abs was created from the anti-HER2/neu (also named c-erbB2) C6.5 single-chain Fv (scFv) and its affinity mutants. The scFv affinities range from 10(-7) to 10(-11) M, and the IgG Abs retain the affinities of the scFv from which they were derived. The apparent affinity of the Abs ranged from nearly 10(-10) M (the lowest affinity variant) to almost 10(-11) M (the other variants). The IgG molecules were tested for their ability to elicit ADCC in vitro against three tumor cell lines with differing levels of HER2/neu expression using unactivated human PBMC from healthy donors as the effector cells. The results demonstrated that both the apparent affinity and intrinsic affinity of the Abs studied regulate ADCC. High-affinity tumor Ag binding by the IgGs led to the most efficient and powerful ADCC. Tumor cells expressing high levels of HER2/neu are more susceptible to the ADCC triggered by Abs than the cells expressing lower amounts of HER2/neu. These findings justify the examination of high affinity Abs for ADCC promotion. Because high affinity may impair in vivo tumor targeting, a careful examination of Ab structure to function relationships is required to develop optimized therapeutic unconjugated Abs.  相似文献   

2.
Anti-HER2/neu therapy of human HER2/neu-expressing malignancies such as breast cancer has shown only partial success in clinical trials. To expand the clinical potential of this approach, we have genetically engineered an anti-HER2/neu IgG3 fusion protein containing GM-CSF. Anti-HER2/neu IgG3-(GM-CSF) expressed in myeloma cells was correctly assembled and secreted. It was able to target HER2/neu-expressing cells and to support growth of a GM-CSF-dependent murine myeloid cell line, FDC-P1. The Ab fusion protein activated J774.2 macrophage cells so that they exhibit an enhanced cytotoxic activity and was comparable to the parental Ab in its ability to effect Ab-dependent cellular cytotoxicity-mediated tumor cell lysis. Pharmacokinetic studies showed that anti-HER2/neu IgG3-(GM-CSF) is stable in the blood. Interestingly, the half-life of anti-HER2/neu IgG3-(GM-CSF) depended on the injected dose with longer in vivo persistence observed at higher doses. Biodistribution studies showed that anti-HER2/neu IgG3-(GM-CSF) is mainly localized in the spleen. In addition, anti-HER2/neu IgG3-(GM-CSF) was able to target the HER2/neu-expressing murine tumor CT26-HER2/neu and enhance the immune response against the targeted Ag HER2/neu. Anti-HER2/neu IgG3-(GM-CSF) is able to enhance both Th1- and Th2-mediated immune responses and treatment with this Ab fusion protein resulted in significant retardation in the growth of s.c. CT26-HER2/neu tumors. Our results suggest that anti-HER2/neu IgG3-(GM-CSF) fusion protein is useful in the treatment of HER2/neu-expressing tumors.  相似文献   

3.
Anti-HER2/neu antibody therapy has been reported to mediate tumor regression of HER2/ neu+ tumors. Here we demonstrated the expression of HER2 in a wide range of human melanoma cells including a primary culture and seven cell lines, and we further investigated whether HER2 could be served as a target for T cell mediated immunotherapy of human melanoma. Specific cytolytic activity of activated T cells (ATC) armed with anti-CD3 x anti-HER2 bispecific antibody (HER2Bi-Ab) against Malme-3M-luc cells was evaluated by bioluminescent signal generated by luciferase reporter which did not alter HER2 expression or proliferation ability of Malme-3M cells. Contrast with unarmed ATC, increased cytotoxic activity of HER2Bi-armed ATC against Malme-3M-luc cells was observed at effector/target (E/T) ratios of 1:1, 5:1, and 20:1. Moreover, HER2Bi-armed ATC expressed higher level of activation marker CD69 and secreted significantly higher level of IFN-γ than unarmed ATC counterpart at the E/T ratio of 20:1. In addition, compared with anti-HER2 mAb (Herceptin®) or unarmed ATC, HER2Bi-armed ATC showed remarkable suppression effect on Malme-3M-luc tumor cells. Furthermore, in melanoma tumor cell xenograft mice, infusion of HER2Bi-armed ATC successfully inhibited the growth of melanoma tumors. The anti-tumor effect of HER2Bi-armed ATC may provide a promising immunotherapy for melanoma in the future.  相似文献   

4.
Unconjugated monoclonal antibodies have emerged as important therapeutic agents for selected malignancies. One mechanism by which antibodies can exert cytotoxic effects is antibody-dependent cellular cytotoxicity (ADCC). In an effort to increase the efficiency of ADCC at tumor sites, we have focused on the construction of bispecific antibodies specific for the tumor antigen HER2/neu and the Fc gamma RIII-activating receptor (CD16) found on NK cells, mononuclear phagocytes, and neutrophils. Here, we describe the production of bispecific minibodies in two distinct binding formats. The parent minibody was constructed such that the IgG1 C(H)3 constant domain serves as the oligomerization domain and is attached to an anti-CD16 and an anti-HER2/ neu single-chain Fv via 19- and 29-amino acid linkers, respectively. This molecule can be expressed in mammalian cells from a dicistronic vector and has been purified using sequential affinity purification techniques. Analysis by surface plasmon resonance shows that the bispecific minibody can bind to HER2/neu and CD16, both individually and simultaneously. Furthermore, cytotoxicity studies show that the minibody can induce significant tumor cell lysis at a concentration as low as 20 nm. A trimeric, bispecific minibody (TriBi) that binds dimerically to HER2/neu and monomerically to CD16 induces equivalent cytotoxicity at lower antibody concentrations than either the parent minibody or the corresponding single-chain dimer. Both minibody constructs are stable in mouse and human serum for up to 72 h at 37 degrees C. These minibodies have the potential to target solid tumors and promote tumor lysis by natural killer cells and mononuclear phagocytes.  相似文献   

5.
Monoclonal antibodies specific for the p185HER2/neu growth factor receptor represent a significant advance in receptor-based therapy for p185HER2/neu-expressing human cancers. We have used a structure-based approach to develop a small (1.5 kDa) exocyclic anti-HER2/neu peptide mimic (AHNP) functionally similar to an anti-p185HER2/neu monoclonal antibody, 4D5 (Herceptin). The AHNP mimetic specifically binds to p185HER2/neu with high affinity (KD=300 nM). This results in inhibition of proliferation of p185HER2/neu-overexpressing tumor cells, and inhibition of colony formation in vitro and growth of p185HER2/neu-expressing tumors in athymic mice. In addition, the mimetic sensitizes the tumor cells to apoptosis when used in conjunction with ionizing radiation or chemotherapeutic agents. A comparison of the molar quantities of the Herceptin antibody and the AHNP mimetic required for inhibiting cell growth and anchorage-independent growth showed generally similar activities. The structure-based derivation of the AHNP represents a novel strategy for the design of receptor-specific tumor therapies.  相似文献   

6.
IFN-alpha, a cytokine crucial for the innate immune response, also demonstrates antitumor activity. However, use of IFN-alpha as an anticancer drug is hampered by its short half-life and toxicity. One approach to improving IFN-alpha's therapeutic index is to increase its half-life and tumor localization by fusing it to a tumor-specific Ab. In the present study, we constructed a fusion protein consisting of anti-HER2/neu-IgG3 and IFN-alpha (anti-HER2/neu-IgG3-IFN-alpha) and investigated its effect on a murine B cell lymphoma, 38C13, expressing human HER2/neu. Anti-HER2/neu-IgG3-IFN-alpha exhibited potent inhibition of 38C13/HER2 tumor growth in vivo. Administration of three daily 1-microg doses of anti-HER2/neu-IgG3-IFN-alpha beginning 1 day after tumor challenge resulted in 88% of the mice remaining tumor free. Remarkably, anti-HER2/neu-IgG3-IFN-alpha demonstrated potent activity against established 38C13/HER2 tumors, with complete tumor remission observed in 38% of the mice treated with three daily doses of 5 microg of the fusion protein (p = 0.0001). Ab-mediated targeting of IFN-alpha induced growth arrest and apoptosis of lymphoma cells contributing to the antitumor effect. The fusion protein also had a longer in vivo half-life than rIFN-alpha. These results suggest that IFN-alpha Ab fusion proteins may be effective in the treatment of B cell lymphoma.  相似文献   

7.
Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECD(HER2)) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECD(HER2). Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.  相似文献   

8.
9.
Ren G  Webster JM  Liu Z  Zhang R  Miao Z  Liu H  Gambhir SS  Syud FA  Cheng Z 《Amino acids》2012,43(1):405-413
Molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression has drawn significant attention because of the unique role of the HER2 gene in diagnosis, therapy and prognosis of human breast cancer. In our previous research, a novel cyclic 2-helix small protein, MUT-DS, was discovered as an anti-HER2 Affibody analog with high affinity through rational protein design and engineering. MUT-DS was then evaluated for positron emission tomography (PET) of HER2-positive tumor by labeling with two radionuclides, 68Ga and 18F, with relatively short half-life (t1/2<2 h). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with 64Cu or 111In and evaluated for in vivo targeting of HER2-positive tumor in mice. Design 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated MUT-DS (DOTA-MUT-DS) was chemically synthesized using solid phase peptide synthesizer and I2 oxidation. DOTA-MUT-DS was then radiolabeled with 64Cu or 111In to prepare the HER2 imaging probe (64Cu/111In-DOTA-MUT-DS). Both biodistribution and microPET imaging of the probe were evaluated in nude mice bearing subcutaneous HER2-positive SKOV3 tumors. DOTA-MUT-DS could be successfully synthesized and radiolabeled with 64Cu or 111In. Biodistribution study showed that tumor uptake value of 64Cu or 111In-labeled DOTA-MUT-DS was 4.66±0.38 or 2.17±0.15%ID/g, respectively, in nude mice bearing SKOV3 xenografts (n=3) at 1 h post-injection (p.i.). Tumor-to-blood and tumor-to-muscle ratios for 64Cu-DOTA-MUT-DS were attained to be 3.05 and 3.48 at 1 h p.i., respectively, while for 111In-DOTA-MUT-DS, they were 2.04 and 3.19, respectively. Co-injection of the cold Affibody molecule ZHER2:342 with 64Cu-DOTA-MUT-DS specifically reduced the SKOV3 tumor uptake of the probe by 48%. 111In-DOTA-MUT-DS displayed lower liver uptake at all the time points investigated and higher tumor to blood ratios at 4 and 20 h p.i., when compared with 64Cu-DOTA-MUT-DS. This study demonstrates that the 2-helix protein based probes, 64Cu/111In DOTA-MUT-DS, are promising molecular probes for imaging HER2-positive tumor. Two-helix small protein scaffold holds great promise as a novel and robust platform for imaging and therapy applications.  相似文献   

10.
11.
BACKGROUND AND PURPOSE: Expression of the HER2/neu proto-oncogene, a receptor-like transmembrane protein expressed at low levels on some normal cells, is markedly increased in a subset of human breast, colon, lung, and ovarian cancers. A humanized HER2/neu antibody has been tested as a therapeutic agent in several clinical trials, with promising results. We have developed a family of anti-HER2/neu fusion proteins. To evaluate the immunologic efficacy of these proteins, it is critical that tumors expressing the target antigen can grow in immunologically intact mice. METHOD: To produce murine tumors expressing human HER2/neu on the surface, CT26, MC38, and EL4 murine cell lines were transduced by use of a retroviral construct containing the cDNA encoding the human HER2/neu gene. RESULTS: Histologic features and kinetics of tumor growth in subcutaneous space of the human HER2/neu-expressing cells were similar to those of the respective parental cell lines. Intravenous inoculation with these cells induced disseminated malignant disease. Flow cytometric and immmunohistochemical analyses of freshly isolated tumors revealed in vivo expression of human HER2/neu. Secretion of antigen was not detected by use of an ELISA. CONCLUSION: Although an antibody response against the human HER2/neu antigen was observed, this response does not affect the growth rate of the HER2/neu-expressing cells. These murine models may be useful tools for evaluation of anti-cancer therapeutic approaches that target human HER2/neu.  相似文献   

12.
Apigenin is a low toxicity and non-mutagenic phytopolyphenol and protein kinase inhibitor. It exhibits anti-proliferating effects on human breast cancer cells. Here we examined several human breast cancer cell lines having different levels of HER2/neu expression and found that apigenin exhibited potent growth-inhibitory activity in HER2/neu-overexpressing breast cancer cells but was much less effective for those cells expressing basal levels of HER2/neu. Induction of apoptosis was also observed in HER2/neu-overexpressing breast cancer cells in a dose- and time-dependent manner. However, the one or more molecular mechanisms of apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells remained to be elucidated. A cell survival pathway involving phosphatidylinositol 3-kinase (PI3K), and Akt is known to play an important role in inhibiting apoptosis in response to HER2/neu-overexpressing breast cancer cells, which prompted us to investigate whether this pathway plays a role in apigenin-induced apoptosis in HER2/neu-overexpressing breast cancer cells. Our results showed that apigenin inhibits Akt function in tumor cells in a complex manner. First, apigenin directly inhibited the PI3K activity while indirectly inhibiting the Akt kinase activity. Second, inhibition of HER2/neu autophosphorylation and transphosphorylation resulting from depleting HER2/neu protein in vivo was also observed. In addition, apigenin inhibited Akt kinase activity by preventing the docking of PI3K to HER2/HER3 heterodimers. Therefore, we proposed that apigenin-induced cellular effects result from loss of HER2/neu and HER3 expression with subsequent inactivation of PI3K and AKT in cells that are dependent on this pathway for cell proliferation and inhibition of apoptosis. This implies that the inhibition of the HER2/HER3 heterodimer function provided an especially effective strategy for blocking the HER2/neu-mediated transformation of breast cancer cells. Our results also demonstrated that apigenin dissociated the complex of HER2/neu and GRP94 that preceded the depletion of HER2/neu. Apigenin-induced degradation of mature HER2/neu involves polyubiquitination of HER2/neu and subsequent hydrolysis by the proteasome.  相似文献   

13.
HER2胞外区基因的克隆及其在大肠杆菌中的可溶性表达   总被引:1,自引:0,他引:1  
采用反转录PCR和PCR方法分别克隆P185^HER2/neu胞外区基因和噬菌体M13K07g3p—N1结构域基因,然后将二偶联入pET-22b( )载体中,在大肠杆菌中进行融合表达。可溶性目的蛋白表达量占细菌可溶性表达产物总量的30%72右.并通过镍亲和层析纯化出目的蛋白。以上结果为从噬菌体抗体库中筛选抗P185^HER2/neu的抗体奠定了基础。  相似文献   

14.
Photosensitizer-antibody conjugates are successfully used for targeted elimination of cancer cells bearing specific membrane markers. This method is known as photoimmunotherapy. However, chemical conjugation of photosensitizer and antibody poses a number of complications such as low reproducibility, aggregation and unconjugated photosensitizer impurities. Here we report a fully genetically encoded photoimmunosensitizer, consisting of an anti-HER2/neu miniantibody 4D5scFv and a phototoxic fluorescent protein KillerRed. Both domains in this photoimmunosensitizer retained their functional qualities - high affinity for HER2/neu antigen and phototoxicity respectively. 4D5scFv-KillerRed fusion protein showed high specificity for HER2/neu-over-expressing cells and effectively lowered their viability upon illumination.  相似文献   

15.
应用RT-PCR技术从人乳腺癌细胞系SK-BR-3中克隆出人表皮生长因子受体2(human epidermal growth factorreceptor 2,HER2)基因的胞外段,并插入到表达载体pET-30a中,得到重组表达载体pET30-HER2(Ex)。将该载体转化至大肠杆菌BL21(DE3)细胞中,加入IPTG进行诱导表达,成功获得HER2胞外段蛋白。分别提取培养液上清、大肠杆菌周质腔、细胞质可溶性及不可溶性组分蛋白进行SDS-PAGE电泳分析,确定目的蛋白定位于大肠杆菌细胞质包涵体中。通过改变诱导温度、诱导物浓度、诱导起始菌体密度和诱导时间,寻找最佳表达条件,使目的蛋白的表达量达到最高。结果表明,在37℃下,OD600达到1.0时,经终浓度为0.1 mmol/L的IPTG诱导4 h,目的蛋白的表达量最高。将重组表达菌进行超声破碎,分离出包涵体组分,经Ni2+亲和层析纯化后获得了纯度>90%的HER2胞外段蛋白,从而为抗HER2抗体的制备及肿瘤疫苗的研究奠定了基础。  相似文献   

16.
Trastuzumab is used for breast cancer patients with high expression levels of HER2 (human epidermal growth factor receptor 2)/neu; however, it has no effect on cancers with low levels of HER2/neu. SM (solamargine), a major steroidal alkaloid glycoside purified from Solanum incanum, triggered apoptosis of breast cancer cells (MCF-7 and SK-BR-3 cells) and non-cancerous breast epithelial cells (HBL-100 cells) within 3 h. To extend the application of trastuzumab in breast cancer patients, the regulation of HER2/neu expression by SM was investigated. SM significantly up-regulates HER2/neu expression in breast cancer cells with low and high expression levels of HER2/neu, and synergistically enhanced the effect of trastuzumab in inhibiting cell proliferation. Additionally, HER2/neu and TOP2A [TopoII (topoisomerase II) alpha] genes share the same amplicon on an identical chromosome. Notably, SM co-regulates HER2/neu and TopoIIalpha expression markedly, and enhances TopoII inhibitor-EPI (epirubicin)-induced cytotoxicity to breast cancer cells.  相似文献   

17.
The HER2/neu proto-oncogene encodes a 185-kDa trans-membrane glycoprotein kinase with extensive homology to the epidermal growth factor receptor and plays a key role in the transformation and growth of malignant tumors. To date, two antibody drugs targeting HER2/neu have been developed successfully. In order to reduce the cost and the time of clinical treatment, we produced a fusion protein composed of human beta defensin 2 (hBD2) and anti-HER2/neu single-chain variable fragment (scFv 4D5), which is capable of specifically targeting, significantly inhibiting, and promptly killing HER2/neu-positive cancer cells. The recombinant protein was expressed in Escherichia coli using the small ubiquitin-related modifier (SUMO) as the molecular chaperone, and the optimal expression level reached to 40.2 % of the total supernatant protein. After purifying by Ni-NTA affinity chromatography, the fusion protein was cleaved with a SUMO-specific protease to obtain hBD2–4D5, which was further purified by Ni-NTA affinity chromatography. The purity of hBD2–4D5 was higher than 95 %, and the yield was 19?±?2 mg/L in flask fermentation. The cell number count and flow cytometry results showed that hBD2–4D5 exerted cytotoxic and anti-proliferative effects on HER2/neu-positive breast cancer cell line, SKBR-3. The results of scanning electron microscope and transmission electron microscope observation indicated that hBD2–4D5 could induce intracellular ultrastructure changes and cell necrosis by disrupting the cell membrane. Immunofluorescence analysis showed that hBD2–4D5 could bind to SKBR-3 cells and further be internalized into the cytoplasm. Moreover, hBD2–4D5 could also mediate apoptosis of SKBR-3 cells by up-regulating the ratio of Bax to Bcl-2.  相似文献   

18.
HER-2/neu oncoprotein is overexpressed in a variety of human tumors and is associated with aggressive disease. Immunogenic HER-2/neu CTL epitopes have been used as vaccines for the treatment of HER-2/neu positive malignancies with limited success. By applying prediction algorithms for MHC class I ligands and proteosomal cleavages, in this study, we describe the identification of HER-2/neu decamer LIAHNQVRQV spanning residues 85-94 (HER-2(10(85))). HER-2(10(85)) proved to bind with high affinity to HLA-A2.1 and was stable for 4 h in an off-kinetics assay. This peptide was immunogenic in HLA-A2.1 transgenic (HHD) mice inducing peptide-specific CTL, which responded to tumor cell lines of various origin coexpressing human HER-2/neu and HLA-A2.1. This demonstrates that HER-2(10(85)) is naturally processed from endogenous HER-2/neu. Five of sixteen HER-2/neu+ HLA-A2.1+ breast cancer patients analyzed had HER-2(10(85))-reactive T cells ranging from 0.35-0.70% of CD8+ T cells. Depletion of T regulatory cells from PBMC enabled the rapid expansion of HLA-A2.1/HER-2(10(85))pentamer+/CD8+ cells (PENT+/CD8+), whereas significantly lower numbers of CTL could be generated from unfractionated PBMC. HER-2(10(85))-specific human CTL recognized the HER-2/neu+ HLA-A2.1+ tumor cell line SKBR3.A2, as determined by IFN-gamma intracellular staining and in the high sensitivity CD107alpha degranulation assay. Finally, HER-2(10(85)) significantly prolonged the survival of HHD mice inoculated with the transplantable ALC.A2.1.HER tumor both in prophylactic and therapeutic settings. These data demonstrate that HER-2(10(85)) is an immunogenic peptide, capable of eliciting CD8-mediated responses in vitro and in vivo, providing the platform for further exploitation of HER-2(10(85)) as a possible target for anticancer immunotherapy.  相似文献   

19.
The antitumor effects of therapeutic mAbs may depend on immune effector cells that express FcRs for IgG. IL-12 is a cytokine that stimulates IFN-γ production from NK cells and T cells. We hypothesized that coadministration of IL-12 with a murine anti-HER2/neu mAb (4D5) would enhance the FcR-dependent immune mechanisms that contribute to its antitumor activity. Thrice-weekly therapy with IL-12 (1 μg) and 4D5 (1 mg/kg) significantly suppressed the growth of a murine colon adenocarcinoma that was engineered to express human HER2 (CT-26(HER2/neu)) in BALB/c mice compared with the result of therapy with IL-12, 4D5, or PBS alone. Combination therapy was associated with increased circulating levels of IFN-γ, monokine induced by IFN-γ, and RANTES. Experiments with IFN-γ-deficient mice demonstrated that this cytokine was necessary for the observed antitumor effects of therapy with IL-12 plus 4D5. Immune cell depletion experiments showed that NK cells (but not CD4(+) or CD8(+) T cells) mediated the antitumor effects of this treatment combination. Therapy of HER2/neu-positive tumors with trastuzumab plus IL-12 induced tumor necrosis but did not affect tumor proliferation, apoptosis, vascularity, or lymphocyte infiltration. In vitro experiments with CT-26(HER2/neu) tumor cells revealed that IFN-γ induced an intracellular signal but did not inhibit cellular proliferation or induce apoptosis. Taken together, these data suggest that tumor regression in response to trastuzumab plus IL-12 is mediated through NK cell IFN-γ production and provide a rationale for the coadministration of NK cell-activating cytokines with therapeutic mAbs.  相似文献   

20.
HER2/neu oncogene encodes a 185 kDa trans-membrane protein which is overexpressed in 20-30% of breast and ovarian cancers and portends a poor prognosis. We have studied the targeting and therapy of this oncoprotein with 4D5, a murine monoclonal antibody which recognizes a distinct epitope on the extracelluar domain of HER2/neu. We conjugated the antibody with an active ester of the macrocyclic chelating agent DOTA, radiolabeled the conjugate with either (111)In or (90)Y, and studied the antibody distribution and therapy, respectively, in athymic mice bearing xenografts of MCF7/HER2/neu, a human breast cancer cell line transfected with the HER2/neu oncogene. For the biodistribution of (111)In-labeled DOTA-4D5, a high specificity of tumor localization (30% ID/g) was seen with a tumor-to-blood ratio of greater than 2 at 48 h postinjection. Compared to a previously published study with (125)I-labeled 4D5 in beige nude mice bearing NIH3T3/HER2/neu xenografts [De Santes et al. (1992) Cancer Res. 52, 1916-1923], (111)In-labeled 4D5 antibody gave superior antibody uptake in tumor (30% ID/g vs 17% ID/g at 48h). In the therapy study, treatment of the nude mice bearing MCF7/HER2/neu xenografts with 100 microCi (3 microg) of (90)Y-labeled DOTA-4D5 caused a 3-fold reduction of tumor growth compared to untreated controls (injected with human serum albumin) in 40 days. Treatment of animals with 100 microCi of nonspecific antibody (90)Y-labeled DOTA-Leu16 (3 microg) had no tumor growth inhibition. Treatment with unlabeled DOTA-4D5 (3 microg) had a slight effect on tumor growth compared to untreated controls. When analyzed at the level of single animals, no effect was seen in seven of nine animals; however, in two of the animals, tumor growth inhibition was observed. Although a cold antibody therapeutic effect was unexpected at this dose level (3 microg), it may be possible that in some animals that 3 microg of antibody of (90)Y-labeled DOTA-4D5 augmented tumor growth reduction. To further explore the effects of cold antibody treatment alone, animals were treated with 100 or 400 microg of unlabeled 4D5 administered in two doses. These animals showed a 1.7-1.8-fold reduction in tumor growth over 28 days, a result less than that obtained with RIT only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号