首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Very-long-chain polyunsaturated fatty acids (VLCPUFAs) have demonstrated health benefits. Currently, the main sources for these fatty acids are oils from fish and microbes. However, shrinking fish populations and the high cost of microbial oil extraction are making the economic sustainability of these sources questionable. Metabolic engineering of oilseed crops could provide a novel and sustainable source of VLCPUFAs. Recently, genes encoding desaturases and elongases from microbes have been identified and successfully expressed in oilseed plants. However, the levels of VLCPUFAs produced in transgenic plants expressing these genes are still much lower than those found in native microbes. This review assesses the recent progress and future perspectives in the metabolic engineering of PUFAs in plants.  相似文献   

2.
超长链多不饱和脂肪酸(VLCPUFAs)对人类健康非常重要。日常摄入一定量的VLCPUFAs能够补充人体自身合成的不足, 并对某些疾病起到明显的预防和治疗作用。VLCPUFAs主要源自深海鱼油, 但由于市场需求的迅速增长和海洋可捕捞 鱼类资源的日益减少, 该途径已经远远不能满足市场的需要, 寻找更为持续且稳定的VLCPUFAs来源已经成为当务之急。最近, 人们已经克隆了VLCPUFAs生物合成相关的去饱和酶和延伸酶基因, 并希望在植物特别是油料作物中共表达这些基因, 使其成为生产VLCPUFAs的“绿色细胞工厂”。目前已有多个研究小组在进行转基因植物合成VLCPUFAs的探索, 并取得了突破性的研究成果。本文综述了相关的研究进展, 并对存在的问题和解决策略进行了探讨。  相似文献   

3.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as docosahexaenoic acid (DHA, 22:6n-3), arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5-n3) are nutritionally important for humans and animals. De novo biosynthesis of these fatty acids mainly occurs in microorganisms and goes through either an aerobic pathway catalyzed by type I/II fatty acid synthase, desaturases and elongases or an anaerobic pathway catalyzed by a polyunsaturated fatty acid synthase. After synthesis, VLCPUFAs must be incorporated into glycerolipids for storage through acyl assembly processes. Understanding the mechanisms for the biosynthesis of VLCPUFAs and their incorporation into glycerolipids is important not only for developing a renewable, sustainable and environment-friendly source of these fatty acids in microorganisms, but also, for designing effective strategies for metabolic engineering of these fatty acids in heterologous systems. This review highlights recent findings which have increased our understanding of biosynthesis of VLCPUFAs and their incorporation into glycerolipids in microorganisms. Future directions in improving the production of VLCPUFAs in native microbial producers are also discussed along with transgenic production of these fatty acids in oleaginous microorganisms and oilseed crops for food and feed uses.  相似文献   

4.
Bryophyte Marchantia polymorpha L. produces C22 very-long-chain polyunsaturated fatty acid (VLCPUFA). Thus far, no enzyme that mediates elongation of C20 VLCPUFAs has been identified in land plants. Here, we report the isolation and characterization of the gene MpELO2, which encodes an ELO-like fatty acid elongase in M. polymorpha. Heterologous expression in yeast demonstrated that MpELO2 encodes delta5-elongase, which mediates elongation of arachidonic (20:4) and eicosapentaenoic acids (20:5). Phylogenetic and gene structural analysis indicated that the MpELO2 gene is closely related to bryophyte Delta6-elongase genes for C18 fatty acid elongation and diverged from them by local gene duplication.  相似文献   

5.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.  相似文献   

6.
Very long chain polyunsaturated fatty acids (VLCPUFAs), especially eicosapentaenoic acid (EPA, 20:5?5,8,11,14,17) and docosahexaenoic acid (DHA, 22:6?4,7,10,13,16,19) have demonstrated important roles in a number of aspects of human health. Currently, our primary dietary sources for these fatty acids are from marine fish. Producing VLCPUFAs in oilseed crop by metabolic engineering was considered to provide an alternative, sustainable sources. Here, three heterologous genes, ?9 elongase (?9-Elo) of Isochrysis galbana, ?8 desaturase (?8-Des) of Euglena gracilis, ?5 desaturase (?5-Des) of Mortierella alpina, were co-transformed into maize inbred line Qi319 using a particle bombardment transformation method to produce EPA through the alternative ?8 desaturation synthetic pathway. A total of 144 herbicide resistant lines were obtained with an average transformation efficiency of 7.95%, of which 98 lines contain the Bar genes with the positive transformation efficiency of 4.74%. In addition, 60 of the 98 positive transgenic lines were identified to contain all three transgenes, ?9-Elo, ?8-Des, and ?5-Des. The fatty acid composition of the leaves from the 60 transgenic lines were subjected to gas liquid chromatography analysis and the results showed that the amounts of EPA reached 1.99% in an individual leaf. These data demonstrate the feasibility for the heterologous production of EPA in maize and this will lay a foundation for the production of VLCPUFAs, including EPA and DHA, in maize by metabolic engineering in the future.  相似文献   

7.
The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.  相似文献   

8.
球等鞭金藻(Isochrysis galbana)是一类单细胞海洋微藻,富含二十二碳六烯酸(DHA,22:6Δ4,7,10,13,16,19)。我们利用RACE的方法从球等鞭金藻cDNA文库中同源克隆到一个大小为1329 bp的cDNA片段,编码442个氨基酸的多肽,分子量约49.9 kD。生物信息学分析表明,其编码产物N端具有细胞色素b5结构域,以及与电子传递有关的三个富含组氨酸的结构域,与Pavlova salinaΔ5去饱和酶同源性最高,达56%,故将该基因命名为IgD5。酿酒酵母功能鉴定实验表明,其编码的蛋白质具有Δ5去饱和酶活性,能够将二高-γ-亚麻酸(DGLA,20:3Δ8,11,14)转化成花生四烯酸(AA,20:4Δ5,8,11,14),转化效率平均为34.6%,最高可达40.3%。  相似文献   

9.
A method is described for the enrichment of odd very-long-chain polyunsaturated fatty acids (VLCPUFAs) by means of RP-HPLC and argentation TLC from total fatty acids of the dinoflagellate A. carterae and their identification as picolinyl esters by means of microbore liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The combination of argentation TLC and LC-MS/APCI was used to identify rare and unusual odd VLCPUFAs up to nonacosahexaenoic acid. Two acids, (allZ)-nonacosa-11,14,17,20,23-pentaenoic acid (29:5n-6) and (allZ)-nonacosa-11,14,17,20,23,26-hexaenoic acid (29:6n-3), were synthesized for the first time to unambiguously confirm their structure. Possible biosynthetic pathways for odd VLCPUFAs are also proposed.  相似文献   

10.
A method is described for the enrichment of very-long-chain polyunsaturated fatty acids (VLCPUFAs) from total fatty acids of Amphidinium carterae and their identification as picolinyl esters by means of microbore liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The combination of argentation TLC and LC-MS/APCI was used to identify unusual VLCPUFAs up to hexatriacontaoctaenoic acid. Two acids, 36:7n-6 and 36:8n-3, were also synthesized to unambiguously confirm their structure. The possibilities of VLCPUFAs biosynthesis are proposed.  相似文献   

11.
omega3-Very long chain polyunsaturated fatty acids (VLCPUFA) are essential for human development and brain function and, thus, are indispensable components of the human diet. The current main source of VLCPUFAs is represented by ocean fish stocks, which are in severe decline, and the development of alternative, sustainable sources of VLCPUFAs is urgently required. Our research aims at exploiting the powerful infrastructure available for the large scale culture of oilseed crops, such as rapeseed, to produce VLCPUFAs such as eicosapentaenoic acid in transgenic plants. VLCPUFA biosynthesis requires repeated desaturation and repeated elongation of long chain fatty acid substrates. In previous experiments the production of eicosapentaenoic acid in transgenic plants was found to be limited by an unexpected bottleneck represented by the acyl exchange between the site of desaturation, endoplasmic reticulum-associated phospholipids, and the site of elongation, the cytosolic acyl-CoA pool. Here we report on the establishment of a coordinated, exclusively acyl-CoA-dependent pathway, which avoids the rate-limiting transesterification steps between the acyl lipids and the acyl-CoA pool during VLCPUFA biosynthesis. The pathway is defined by previously uncharacterized enzymes, encoded by cDNAs isolated from the microalga Mantoniella squamata. The conceptual enzymatic pathway was established and characterized first in yeast to provide proof-of-concept data for its feasibility and subsequently in seeds of Arabidopsis thaliana. The comparison of the acyl-CoA-dependent pathway with the known lipid-linked pathway for VLCPUFA biosynthesis showed that the acyl-CoA-dependent pathway circumvents the bottleneck of switching the Delta6-desaturated fatty acids between lipids and acyl-CoA in Arabidopsis seeds.  相似文献   

12.
Two variants of plant growth-promoting strain Pseudomonas putida BS1380 harboring the naphthalene degradative plasmid pBS2 and the recombinant plasmid pNAU64 that contains the genes encoding for naphthalene dioxygenase were constructed by conjugation. The ability of this strain to produce phytohormone indole-3-acetic acid from different carbon sources was studied. Indole-3-acetic acid synthesis by these transconjugants was 15-30 times as much in contrast to a wild-type strain with glucose as the sole carbon source. No difference was observed in other carbon or nitrogen sources. It is suggested that naphthalene dioxygenase is involved in the conversion of indole-3-pyruvic acid to indole-3-acetic acid.  相似文献   

13.
The effective flux between phospholipids and neutral lipids is critical for a high level of biosynthesis and accumulation of very-long-chain polyunsaturated fatty acids (VLCPUFAs), such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Here we describe a cDNA (PiCPT1) from Phytophthora infestans, a VLCPUFA-producing oomycete, that may have a role in acyl trafficking between diacylglycerol (DAG) and phosphatidylcholine (PC) during the biosynthesis of VLCPUFAs. The cDNA encodes a polypeptide of 393 amino acids with a conserved CDP-alcohol phosphotransferase motif and approximately 27% amino acid identity to the Saccharomyces cerevisiae cholinephosphotransferase (ScCPT1). In vitro assays indicate that PiCPT1 has high cholinephosphotransferase (CPT) activity but no ethanolaminephosphotransferase (EPT) activity. Substrate specificity assays show that it prefers VLCPUFA-containing DAGs, such as ARA DAG and DHA DAG, as substrates. Real-time PCR analysis reveals that expression of PiCPT1 was upregulated in P. infestans organisms fed with exogenous VLCPUFAs. These results lead us to conclude that PiCPT1 is a VLCPUFA-specific CPT which may play an important role in shuffling VLCPUFAs from DAG to PC in the biosynthesis of VLCPUFAs in P. infestans.  相似文献   

14.
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.  相似文献   

15.
Escherichia coli K92 is an opportunistic pathogen bacterium able to produce polysialic acid (PA) capsules when grows at 37°C. PA polysaccharides are cell-associated homopolymers tailored from acid sialic monomers that function as virulence factors in different neuroinvasive diseases caused by certain Enterobacteriaceae. Conversely, when grows at 19°C (restrictive conditions), PA synthesis was negligible, whereas in such condition, a slimy substance started to be accumulated in the culture broths. Analysis by uronic acids colorimetric determinations, gas chromatography–mass spectrometry, and Fourier transform infrared spectroscopy allowed the isolation and identification of mucoid substance as colanic acid (CA). CA is a heteropolymer containing glucose, galactose, fucose, and glucuronic acid as monomers which seems to be involved in the protection of this bacterium against environment assaults. The study of physicochemical conditions required for CA synthesis revealed that in E. coli K92, nutrient (carbon and nitrogen sources) modulates CA production, reaching the maximal values when glucose and proline were as carbon and nitrogen sources, respectively. Furthermore, we have found that E. coli K92 is able to produce CA at all temperatures tested (from 42°C to 15°C), whereas PA synthesis only occurred when bacteria were cultured at temperatures higher than 25°C. Additionally, genetic engineering approaches revealed that the CA cluster including several genes required for synthesis was placed into a DNA fragment of 100 kb using polymerase chain reaction methodology.  相似文献   

16.
Invariance of culture conditions in steady state continuous cultures make these a very valuable tool to study the influence of various culture parameters on cell growth and synthesis of primary and secondary metabolites. The result of a parametric study on production of protease in continuous suspension cultures of Bacillus firmus NRS 783 are reported in this article. This strain is a superior producer of an alkaline protease with major application in the detergent industry. The parameters investigated include dilution rate and concentrations of yeast extract, ammonium, and inorganic phosphate in the bioreactor feed, glucose being the principal carbon source in all experiments. The regulatory effects of the key culture parameters on cell growth, synthesis and secretion of protease, and production of acetic acid are investigated. The relations among the specific cell growth rate, specific utilization rates of the principal carbon, nitrogen, and phosphorous sources, and specific production rates of two nonbiomass products, viz., acetic acid and protease, are examined, and the effects of the manipulated culture parameters on these relations, specific protease activity, and yields of cell mass, protease, and acetic acid on the basis of the principal carbon, nitrogen, and phosphorous sources are studied. An increase in dilution rate led to increases in specific utilization rates of the principal carbon, nitrogen, and phosphorous sources and specific production rates of acetic acid and protease and decreases in bulk activities/concentrations of the three products (acetic acid, cell mass, and protease). As a result, the productivities of the three species were maximized at an intermediate dilution rate. Increased supply of yeast extract (a rich source of amino acids, proteins, and vitamins, besides being an additional source of carbon, nitrogen, and phosphorus) promoted cell mass formation but reduced protease production per unit cell mass. Increased supply of nitrogen and phosphorous sources stimulated protease synthesis up to certain threshold levels and repressed the enzyme synthesis beyond the threshold levels. With increased supply of the nitrogen source, the phosphorous source was more efficiently utilized for cell growth and protease synthesis. Stable maintenance of continuous cultures of B. firmus over prolonged period is demonstrated in this study. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Recent Advances in the Study of Mechanisms of Action of Phytohormones   总被引:3,自引:0,他引:3  
This review highlights recent advances in studies of mechanisms underlying the effects of five phytohormone groups: auxin, cytokinin, gibberellin, abscisic acid, and ethylene. The review summarizes data on receptors of all these phytohormones and the hormone signal transduction systems, which include second messengers, hormone-dependent trans-factors, and the genes controlled by these factors. The effects of phytohormones involve not only induction of novel protein synthesis via activation of their gene expression, but also degradation of repressor proteins through the ubiquitin system. The review contains examples of successful use of data on genes encoding enzymes of phytohormone synthesis and their receptors for development of transgenic plants with particular hormonal characteristics that provide practically valuable traits.  相似文献   

18.
19.
Kojic acid synthesis genes regulation was investigated in Aspergillus oryzae. Our results indicate that kojic acid production was lost in the laeA disruption strain, but was recovered in the LaeA complement strain. Real-time PCR also confirmed that expression of kojic acid biosynthesis genes decreased in the laeA disruption strain, indicating that these genes are under the control of LaeA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号