首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we take the view that computational models of biological systems should satisfy two conditions – they should be able to predict function at a systems biology level, and robust techniques of validation against biological models must be available. A modelling paradigm for developing a predictive computational model of cellular interaction is described, and methods of providing robust validation against biological models are explored, followed by a consideration of software issues.  相似文献   

2.
Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science—and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology.  相似文献   

3.
Gene regulatory network (GRN) modelling has gained increasing attention in the past decade. Many computational modelling techniques have been proposed to facilitate the inference and analysis of GRN. However, there is often confusion about the aim of GRN modelling, and how a gene network model can be fully utilised as a tool for systems biology. The aim of the present article is to provide an overview of this rapidly expanding subject. In particular, we review some fundamental concepts of systems biology and discuss the role of network modelling in understanding complex biological systems. Several commonly used network modelling paradigms are surveyed with emphasis on their practical use in systems biology research.  相似文献   

4.
Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein–DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.  相似文献   

5.
Systems biology is based on computational modelling and simulation of large networks of interacting components. Models may be intended to capture processes, mechanisms, components and interactions at different levels of fidelity. Input data are often large and geographically disperse, and may require the computation to be moved to the data, not vice versa. In addition, complex system-level problems require collaboration across institutions and disciplines. Grid computing can offer robust, scaleable solutions for distributed data, compute and expertise. We illustrate some of the range of computational and data requirements in systems biology with three case studies: one requiring large computation but small data (orthologue mapping in comparative genomics), a second involving complex terabyte data (the Visible Cell project) and a third that is both computationally and data-intensive (simulations at multiple temporal and spatial scales). Authentication, authorisation and audit systems are currently not well scalable and may present bottlenecks for distributed collaboration particularly where outcomes may be commercialised. Challenges remain in providing lightweight standards to facilitate the penetration of robust, scalable grid-type computing into diverse user communities to meet the evolving demands of systems biology.  相似文献   

6.

Background  

One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses.  相似文献   

7.
Network Genomics studies genomics and proteomics foundations of cellular networks in biological systems. It complements systems biology in providing information on elements, their interaction and their functional interplay in cellular networks. The relationship between genomic and proteomic high-throughput technologies and computational methods are described, as well as several examples of specific network genomic application are presented.  相似文献   

8.
In principle, given the amino acid sequence of a protein, it is possible to compute the corresponding three-dimensional structure. Methods for modelling structure based on this premise have been under development for more than 40 years. For the past decade, a series of community wide experiments (termed Critical Assessment of Structure Prediction (CASP)) have assessed the state of the art, providing a detailed picture of what has been achieved in the field, where we are making progress, and what major problems remain. The rigorous evaluation procedures of CASP have been accompanied by substantial progress. Lessons from this area of computational biology suggest a set of principles for increasing rigor in the field as a whole.  相似文献   

9.
A key component of computational biology is to compare the results of computer modelling with experimental measurements. Despite substantial progress in the models and algorithms used in many areas of computational biology, such comparisons sometimes reveal that the computations are not in quantitative agreement with experimental data. The principle of maximum entropy is a general procedure for constructing probability distributions in the light of new data, making it a natural tool in cases when an initial model provides results that are at odds with experiments. The number of maximum entropy applications in our field has grown steadily in recent years, in areas as diverse as sequence analysis, structural modelling, and neurobiology. In this Perspectives article, we give a broad introduction to the method, in an attempt to encourage its further adoption. The general procedure is explained in the context of a simple example, after which we proceed with a real-world application in the field of molecular simulations, where the maximum entropy procedure has recently provided new insight. Given the limited accuracy of force fields, macromolecular simulations sometimes produce results that are at not in complete and quantitative accordance with experiments. A common solution to this problem is to explicitly ensure agreement between the two by perturbing the potential energy function towards the experimental data. So far, a general consensus for how such perturbations should be implemented has been lacking. Three very recent papers have explored this problem using the maximum entropy approach, providing both new theoretical and practical insights to the problem. We highlight each of these contributions in turn and conclude with a discussion on remaining challenges.  相似文献   

10.
The adoption of agent technologies and multi-agent systems constitutes an emerging area in bioinformatics. In this article, we report on the activity of the Working Group on Agents in Bioinformatics (BIOAGENTS) founded during the first AgentLink III Technical Forum meeting on the 2nd of July, 2004, in Rome. The meeting provided an opportunity for seeding collaborations between the agent and bioinformatics communities to develop a different (agent-based) approach of computational frameworks both for data analysis and management in bioinformatics and for systems modelling and simulation in computational and systems biology. The collaborations gave rise to applications and integrated tools that we summarize and discuss in context of the state of the art in this area. We investigate on future challenges and argue that the field should still be explored from many perspectives ranging from bio-conceptual languages for agent-based simulation, to the definition of bio-ontology-based declarative languages to be used by information agents, and to the adoption of agents for computational grids.  相似文献   

11.

Background  

Hidden Markov Models (HMMs) have been extensively used in computational molecular biology, for modelling protein and nucleic acid sequences. In many applications, such as transmembrane protein topology prediction, the incorporation of limited amount of information regarding the topology, arising from biochemical experiments, has been proved a very useful strategy that increased remarkably the performance of even the top-scoring methods. However, no clear and formal explanation of the algorithms that retains the probabilistic interpretation of the models has been presented so far in the literature.  相似文献   

12.
"System Modeling in Cellular Biology: From Concepts to Nuts and Bolts" by Szallasi, Stelling and Periwal introduces the relevant concepts, terminology, and techniques of this field of science. It emphasises the modelling and computational challenges of taking a multidisciplinary approach to biology. This book provides a comprehensive introduction to systems biology and will form a valuable resource for students, teachers and researchers from both experimental and theoretical disciplines.  相似文献   

13.
Advances in sequence analysis.   总被引:3,自引:0,他引:3  
In its early days, the entire field of computational biology revolved almost entirely around biological sequence analysis. Over the past few years, however, a number of new non-sequence-based areas of investigation have become mainstream, from the analysis of gene expression data from microarrays, to whole-genome association discovery, and to the reverse engineering of gene regulatory pathways. Nonetheless, with the completion of private and public efforts to map the human genome, as well as those of other organisms, sequence data continue to be a veritable mother lode of valuable biological information that can be mined in a variety of contexts. Furthermore, the integration of sequence data with a variety of alternative information is providing valuable and fundamentally new insight into biological processes, as well as an array of new computational methodologies for the analysis of biological data.  相似文献   

14.
With our growing awareness of the complexity underlying biological phenomena, our need for computational models becomes increasingly apparent. Due to their properties, biological clocks have always lent themselves to computational modelling. Their capacity to oscillate without dampening - even when deprived of all rhythmic environmental information - required the hypothesis of an endogenous oscillator. The notion of a 'clock' provided a conceptual model of this system well before the dynamics of circadian oscillators were probed by computational modelling. With growing insight into the molecular basis of circadian rhythmicity, computational models became more concrete and quantitative. Here, we review the history of modelling circadian oscillators and establish a taxonomy of the modelling world to put the large body of circadian modelling literature into context. Finally, we assess the predictive power of circadian modelling and its success in creating new hypotheses.  相似文献   

15.
Tsoka S  Ouzounis CA 《FEBS letters》2000,480(1):42-48
Computational genomics is a subfield of computational biology that deals with the analysis of entire genome sequences. Transcending the boundaries of classical sequence analysis, computational genomics exploits the inherent properties of entire genomes by modelling them as systems. We review recent developments in the field, discuss in some detail a number of novel approaches that take into account the genomic context and argue that progress will be made by novel knowledge representation and simulation technologies.  相似文献   

16.
The vast number of expression hosts available for recombinant protein production have a variety of advantages and disadvantages; none, however, is globally optimal and host selection is frequently a compromise. Strain development requires a holistic approach, which systems biology can supply by delineating experimental data sets with computational modelling. Here, we review recent advances in computational models, in parallel with an expansion of the molecular toolbox, in the pursuit of optimal host strains for industrial protein production.  相似文献   

17.
The Physiome Project will provide a framework for modelling the human body, using computational methods that incorporate biochemical, biophysical and anatomical information on cells, tissues and organs. The main project goals are to use computational modelling to analyse integrative biological function and to provide a system for hypothesis testing.  相似文献   

18.
SYCAMORE is a browser-based application that facilitates construction, simulation and analysis of kinetic models in systems biology. Thus, it allows e.g. database supported modelling, basic model checking and the estimation of unknown kinetic parameters based on protein structures. In addition, it offers some guidance in order to allow non-expert users to perform basic computational modelling tasks. AVAILABILITY: SYCAMORE is freely available for academic use at http://sycamore.eml.org. Commercial users may acquire a license. CONTACT: ursula.kummer@bioquant.uni-heidelberg.de.  相似文献   

19.
20.
Systems biology applies quantitative, mechanistic modelling to study genetic networks, signal transduction pathways and metabolic networks. Mathematical models of biochemical networks can look very different. An important reason is that the purpose and application of a model are essential for the selection of the best mathematical framework. Fundamental aspects of selecting an appropriate modelling framework and a strategy for model building are discussed. Concepts and methods from system and control theory provide a sound basis for the further development of improved and dedicated computational tools for systems biology. Identification of the network components and rate constants that are most critical to the output behaviour of the system is one of the major problems raised in systems biology. Current approaches and methods of parameter sensitivity analysis and parameter estimation are reviewed. It is shown how these methods can be applied in the design of model-based experiments which iteratively yield models that are decreasingly wrong and increasingly gain predictive power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号