首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Many proteins from plant pathogens affecting the interaction with the host plant have dual functions: they promote virulence on the host species and they function as avirulence determinants by eliciting defense reactions in host cultivars expressing the appropriate resistance genes. In viruses all proteins encoded by the small genomes can be expected to be essential for viral development in the host. However, in different plants surveillance systems have evolved that are able to recognize most of these proteins. Bacteria and fungi have specialized pathogenicity and virulence genes. Many of the latter were originally identified through the resistance gene-dependent elicitor activity of their products. Their role in virulence only became apparent when they were inactivated or transferred to different microbes or after their ectopic expression in host plants. Many microbes appear to maintain these genes despite their disadvantageous effect, introducing only few mutations to abolish the interaction of their products with the plant recognition system. This has been interpreted as been indicative of a virulence function of the gene products that is not impaired by the mutations. Alternatively, in particular in bacteria there is now evidence that pathogenicity was acquired through horizontal gene transfer. Genes supporting virulence in the donor organism's original host appear to have traveled along. Being gratuitous in the new situation, they may have been inactivated without loss of any beneficial function for the pathogen.  相似文献   

4.
The majority of bacterial plant diseases are caused by members of three bacterial genera, Pseudomonas, Xanthomonas, and Erwinia. The identification and characterization of mutants that have lost the abilities to provoke disease symptoms on a compatible host and to induce a defensive hypersensitive reaction (HR) on an incompatible host have led to the discovery of clusters of hrp genes (hypersensitive reaction and pathogenicity) in phytopathogenic bacteria from each of these genera. Here, we report that predicted protein sequences of three hrp genes from Pseudomonas solanacearum show remarkable sequence similarity to key virulence determinants of animal pathogenic bacteria of the genus Yersinia. We also demonstrate DNA homologies between P. solanacearum hrp genes and hrp gene clusters of P. syringae pv. phaseolicola, Xanthomonas campestris pv. campestris, and Erwinia amylovora. By comparing the role of the Yersinia determinants in the control of the extracellular production of proteins required for pathogenicity, we propose that hrp genes code for an export system that might be conserved among many diverse bacterial pathogens of plants and animals but that is distinct from the general export pathway.  相似文献   

5.
6.
In response to the ever-present need to adapt to environmental stress, bacteria have evolved complex (and often overlapping) regulatory networks that respond to various changes in growth conditions, including entry into the host. The expression of most bacterial virulence factors is regulated; thus the question of how bacteria orchestrate this process has become a recurrent research theme for every bacterial pathogen, and the three pathogenic Yersinia are no exception. The earliest studies of regulation in these species were prompted by the characterization of plasmid-encoded virulence determinants, and those conducted since have continued to focus on the principal aspects of virulence in these pathogens. Most Yersinia virulence factors are thermally regulated, and are active at either 28 degrees C (the optimal growth temperature) or 37 degrees C (the host temperature). However, regulation by this omnipresent thermal stimulus occurs through a wide variety of mechanisms, which generally act in conjunction with (or are modulated by) additional controls for other environmental cues such as pH, ion concentration, nutrient availability, osmolarity, oxygen tension and DNA damage. Yersinia's recent entry into the genome sequencing era has given scientists the opportunity to study these regulators on a genome-wide basis. This has prompted the first attempts to establish links between the presence or absence of regulatory elements and the three pathogenic species' respective lifestyles and degrees of virulence.  相似文献   

7.
8.
Regulation of bacterial virulence by two-component systems   总被引:1,自引:0,他引:1  
In bacteria, two-component systems (TCS) are widely used signal transduction devices which are engaged in a multitude of gene regulatory systems that respond to changing growth conditions. Many pathogenic bacteria encounter different microenvironments during their infectious cycle and their ability to efficiently adapt to different niches inside and outside of their host organisms is frequently mediated by TCSs, which can, therefore, be considered as an essential prerequisite for their pathogenicity. Although significant progress has been made in the elucidation of basic principles of the signal transduction process itself, in many pathogens the contribution of TCS to bacterial virulence is insufficiently recognized.  相似文献   

9.
植物病原细菌通过复杂和精细的全局性调控网络来协调多个层面的毒性决定因子。在不同的植物病原细菌中,这些全局性的毒性调控网络控制着细菌的侵染策略、存活以及在面临寄主植物防卫系统的互作环境中实现成功侵染的病程。本文详细分析了植物病原细菌4个重要属(假单胞菌属、果胶杆菌属、黄单胞菌属和雷尔氏菌属)的模式病原菌主要的毒性调控系统,包括群体感应系统、双组分调控系统、转录激活调控子以及转录后、翻译后的调控机制。在此基础上,重点评价了一些模式菌株全局性毒性调控机制的异同点,总结了一些最新的研究进展,并绘制了精细的网络调控图。这些分析表明,虽然一些相同的调控系统控制着病原菌的毒性,但是在不同种以及种下的亚种或者致病变种中这些调控机制功能各异,对于病原菌全毒性的贡献也存在着明显的差异。  相似文献   

10.
11.
12.
What are the molecular determinants that make a bacterium a plant pathogen? In the last 10-20 years, important progress has been made in answering this question. In the early 20th century soon after the discovery of infectious diseases, the first studies of pathogenicity were undertaken. These early studies relied mostly on biochemistry and led to the discovery of several major pathogenicity determinants, such as toxins and hydrolytic enzymes which govern the production of major disease symptoms. From these pioneering studies, a simplistic view of pathogenicity arose. It was thought that only a few functions were sufficient to transform a bacterium into a pathogen. This view rapidly changed when modern techniques of molecular genetics were applied to analyse pathogenicity. Modern analyses of pathogenicity determinants took advantage of the relatively simple organization of the haploid genome of pathogenic bacteria. By creating non-pathogenic mutants, a large number of genes governing bacterium-host interactions were identified. These genes are required either for host colonization or for the production of symptoms. Even though the role of motility and chemotaxis in these processes is still unclear, it is clear that a strong attachment of Agrobacterium to plant cells is a prerequisite for efficient plant transformation and disease. Other important pathogenicity factors identified with a molecular genetic approach include hydrolytic enzymes such as pectinases and cellulases which not only provide nutrients to the bacteria but also facilitate pathogen invasion into host tissues. The precise role of exopolysaccharide in pathogenicity is still under discussion, however it is has been established that it is crucial for the induction of wilt symptoms caused by Ralstonia solanacearum. Trafficking of effector proteins from the invading bacterium into the host cell emerged recently as a new central concept. In plant pathogenic bacteria, protein translocation takes place through the so-called 'type II secretion machinery' encoded by hrp genes in the bacterium. These genes are present in representatives of all the major groups of Gram negative plant pathogenic bacteria except Agrobacterium. Most of these genes have counterparts in pathogens of mammals (including those of human) and they also play a central role in pathogenicity. Additionally, recent evidence suggests that a 'type IV secretion machinery' injects bacterial proteins into host cells. This machinery, originally found to be involved in the transfer of t-DNA from Agrobacterium into plant cells, was recently shown to translocate pathogenicity proteins in pathogens of mammals such as Helicobacter pylori and Brucella. Discovery of the trafficking of proteins from the pathogen into host cells revolutionized our conception of pathogenicity. First, it rather unexpectedly established the conservation of basic pathogenicity strategies in plant and animal pathogens. Second, this discovery changes our ideas about the overall strategy (or mechanism) of pathogenicity, although we still think the end result is exploitation of host cell nutritive components. Rather than killing the host cell from outside, we envision a more subtle approach in which pathogens inject effector proteins into the host cell to effect a change in host cell biology advantageous to the pathogen. Identification of the effector proteins, of their function and of the corresponding molecular targets in the host is a new challenge which will contribute to the conception of new strategies to control diseases.  相似文献   

13.
14.
15.
16.
Common themes in microbial pathogenicity.   总被引:135,自引:6,他引:129       下载免费PDF全文
A bacterial pathogen is a highly adapted microorganism which has the capacity to cause disease. The mechanisms used by pathogenic bacteria to cause infection and disease usually include an interactive group of virulence determinants, sometimes coregulated, which are suited for the interaction of a particular microorganism with a specific host. Because pathogens must overcome similar host barriers, common themes in microbial pathogenesis have evolved. However, these mechanisms are diverse between species and not necessarily conserved; instead, convergent evolution has developed several different mechanisms to overcome host barriers. The success of a bacterial pathogen can be measured by the degree with which it replicates after entering the host and reaching its specific niche. Successful microbial infection reflects persistence within a host and avoidance or neutralization of the specific and nonspecific defense mechanisms of the host. The degree of success of a pathogen is dependent upon the status of the host. As pathogens pass through a host, they are exposed to new environments. Highly adapted pathogenic organisms have developed biochemical sensors exquisitely designed to measure and respond to such environmental stimuli and accordingly to regulate a cascade of virulence determinants essential for life within the host. The pathogenic state is the product of dynamic selective pressures on microbial populations.  相似文献   

17.
Bacterial pathogens either hide from or modulate the host's immune response to ensure their survival. Photorhabdus is a potent insect pathogenic bacterium that uses entomopathogenic nematodes as vectors in a system that represents a useful tool for probing the molecular basis of immunity. During the course of infection, Photorhabdus multiplies rapidly within the insect, producing a range of toxins that inhibit phagocytosis of the invading bacteria and eventually kill the insect host. Photorhabdus bacteria have recently been established as a tool for investigating immune recognition and defense mechanisms in model hosts such as Manduca and Drosophila. Such studies pave the way for investigations of gene interactions between pathogen virulence factors and host immune genes, which ultimately could lead to an understanding of how some Photorhabdus species have made the leap to becoming human pathogens.  相似文献   

18.
19.
He P  Shan L  Sheen J 《Cellular microbiology》2007,9(6):1385-1396
Recent studies have uncovered fascinating molecular mechanisms underlying plant-microbe interactions that coevolved dynamically. As in animals, the primary plant innate immunity is immediately triggered by the detection of common pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs). Different MAMPs are often perceived by distinct cell-surface pattern-recognition receptors (PRRs) and activate convergent intracellular signalling pathways in plant cells for broad-spectrum immunity. Successful pathogens, however, have evolved multiple virulence factors to suppress MAMP-triggered immunity. Specifically, diverse pathogenic bacteria have employed the type III secretion system to deliver a repertoire of virulence effector proteins to interfere with host immunity and promote pathogenesis. Plants challenged by pathogens have evolved the secondary plant innate immunity. In particular, some plants possess the specific intracellular disease resistance (R) proteins to effectively counteract virulence effectors of pathogens for effector-triggered immunity. This potent but cultivar-specific effector-triggered immunity occurs rapidly with localized programmed cell death/hypersensitive response to limit pathogen proliferation and disease development. Remarkably, bacteria have further acquired virulence effectors to block effector-triggered immunity. This review covers the latest findings in the dynamics of MAMP-triggered immunity and its interception by virulence factors of pathogenic bacteria.  相似文献   

20.
Some pathogenic phloem‐limited bacteria are a major threat for worldwide agriculture due to the heavy economic losses caused to many high‐value crops. These disease agents – phytoplasmas, spiroplasmas, liberibacters, and Arsenophonus‐like bacteria – are transmitted from plant to plant by phloem‐feeding Hemiptera vectors. The associations established among pathogens and vectors result in a complex network of interactions involving also the whole microbial community harboured by the insect host. Interactions among bacteria may be beneficial, competitive, or detrimental for the involved microorganisms, and can dramatically affect the insect vector competence and consequently the spread of diseases. Interference is observed among pathogen strains competing to invade the same vector specimen, causing selective acquisition or transmission. Insect bacterial endosymbionts are another pivotal element of interactions between vectors and phytopathogens, because of their central role in insect life cycles. Some symbionts, either obligate or facultative, were shown to have antagonistic effects on the colonization by plant pathogens, by producing antimicrobial substances, by stimulating the production of antimicrobial substances by insects, or by competing for host infection. In other cases, the mutual exclusion between symbiont and pathogen suggests a possible detrimental influence on phytopathogens displayed by symbiotic bacteria; conversely, examples of microbes enhancing pathogen load are available as well. Whether and how bacterial exchanges occurring in vectors affect the relationship between insects, plants, and phytopathogens is still unresolved, leaving room for many open questions concerning the significance of particular traits of these multitrophic interactions. Such complex interplays may have a serious impact on pathogen spread and control, potentially driving new strategies for the containment of important diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号