首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background  

Quantitative real-time polymerase chain reaction (RT-qPCR) is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization.  相似文献   

5.
Processing of gene expression data generated by quantitative real-time RT-PCR   总被引:37,自引:0,他引:37  
Muller PY  Janovjak H  Miserez AR  Dobbie Z 《BioTechniques》2002,32(6):1372-4, 1376, 1378-9
Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.  相似文献   

6.
Real-time quantitative polymerase chain reaction (PCR) with on-line fluorescence detection has become an important technique not only for determination of the absolute or relative copy number of nucleic acids but also for mutation detection, which is usually done by measuring melting curves. Optimum assay conditions have been established for a variety of targets and experimental setups, but only limited attention has been directed to data evaluation and validation of the results. In this work, algorithms for the processing of real-time PCR data are evaluated for several target sequences (p53, IGF-1, PAI-1, Factor VIIc) and compared to the results obtained by standard procedures. The algorithms are implemented in software called SoFAR, which allows fully automatic analysis of real-time PCR data obtained with a Roche LightCycler instrument. The software yields results with considerably increased precision and accuracy of quantifications. This is achieved mainly by the correction of amplification-independent signal trends and a robust fit of the exponential phase of the signal curves. The melting curve data are corrected for signal changes not due to the melting process and are smoothed by fitting cubic splines. Therefore, sensitivity, resolution, and accuracy of melting curve analyses are improved.  相似文献   

7.
Gentle A  Anastasopoulos F  McBrien NA 《BioTechniques》2001,31(3):502, 504-506, 508
The repeatability and sensitivity of a simple, adaptable, semi-quantitative, real-time RT-PCR assay was investigated. The assay can be easily and rapidly applied to quantitate relative levels of any gene product without using standards, provided that amplification conditions are specific for the PCR product of interest. Using the LightCycler real-time PCR machine, a serial 10-fold dilution series (spanning four orders of magnitude) of a 379-bp cDNA template was amplified, and the PCR product was detected using SYBR Green I chemistry. The experiment was repeated on a subsequent day. The experimental design was such that the data lent itself to analysis using an appropriate method for testing repeatability. It was found that, within a single assay, for samples assayed in triplicate, a difference of 23% may be reliably detected. Furthermore, when all of the factors that contribute to variability in the assay are taken into account, such as day-to-day variation in pipetting and amplification efficiency, a 52% difference in target template can be detected using a sample size of 4. The assay was found to be linear over at least four orders of magnitude.  相似文献   

8.
实时荧光定量PCR中内参基因的选择   总被引:5,自引:0,他引:5  
实时荧光定量PCR技术是分析基因表达谱的一种常用方法,在分析中选择合适的内参基因对数据进行校正是得到可信数据的关键。以Lactobacillus helveticus H9为研究对象,应用实时荧光定量PCR技术,评价了5种常用内参基因ldh、recA、rpoB、gapdh和16S rRNA的表达稳定性,通过geNorm和NormFinder程序进行数据分析,结果表明5个候选内参基因在菌株不同的发酵时间点表达相对都较为稳定,结合两种分析得到其中最为稳定的基因是ldh,适合于用作后续实时荧光定量PCR试验中的内参基因。  相似文献   

9.
10.
This paper assesses the quantitative resolution of qPCR using copy number variation (CNV) as a paradigm. An error model is developed for real-time qPCR data showing how the precision of CNV determination varies with the number of replicates. Using samples with varying numbers of X chromosomes, experimental data demonstrates that real-time qPCR can readily distinguish four copes from five copies, which corresponds to a 1.25-fold difference in relative quantity. Digital PCR is considered as an alternative form of qPCR. For digital PCR, an error model is shown that relates the precision of CNV determination to the number of reaction chambers. The quantitative capability of digital PCR is illustrated with an experiment distinguishing four and five copies of the human gene MRGPRX1. For either real-time qPCR or digital PCR, practical application of these models to achieve enhanced quantitative resolution requires use of a high throughput PCR platform that can simultaneously perform thousands of reactions. Comparing the two methods, real-time qPCR has the advantage of throughput and digital PCR has the advantage of simplicity in terms of the assumptions made for data analysis.  相似文献   

11.
A MIQE-compliant real-time PCR assay for Aspergillus detection   总被引:1,自引:0,他引:1  
The polymerase chain reaction (PCR) is widely used as a diagnostic tool in clinical laboratories and is particularly effective for detecting and identifying infectious agents for which routine culture and microscopy methods are inadequate. Invasive fungal disease (IFD) is a major cause of morbidity and mortality in immunosuppressed patients, and optimal diagnostic criteria are contentious. Although PCR-based methods have long been used for the diagnosis of invasive aspergillosis (IA), variable performance in clinical practice has limited their value. This shortcoming is a consequence of differing sample selection, collection and preparation protocols coupled with a lack of standardisation of the PCR itself. Furthermore, it has become clear that the performance of PCR-based assays in general is compromised by the inadequacy of experimental controls, insufficient optimisation of assay performance as well as lack of transparency in reporting experimental details. The recently published "Minimum Information for the publication of real-time Quantitative PCR Experiments" (MIQE) guidelines provide a blueprint for good PCR assay design and unambiguous reporting of experimental detail and results. We report the first real-time quantitative PCR (qPCR) assay targeting Aspergillus species that has been designed, optimised and validated in strict compliance with the MIQE guidelines. The hydrolysis probe-based assay, designed to target the 18S rRNA DNA sequence of Aspergillus species, has an efficiency of 100% (range 95-107%), a dynamic range of at least six orders of magnitude and limits of quantification and detection of 6 and 0.6 Aspergillus fumigatus genomes, respectively. It does not amplify Candida, Scedosporium, Fusarium or Rhizopus species and its clinical sensitivity is demonstrated in histological material from proven IA cases, as well as concordant PCR and galactomannan data in matched broncho-alveolar lavage and blood samples. The robustness, specificity and sensitivity of this assay make it an ideal molecular diagnostic tool for clinical use.  相似文献   

12.
The quantitative determination of transgene copy number in stably transfected mammalian cells has been traditionally estimated by Southern blot analysis. Recently, other methods have become available for appraisal of gene copy number, such as real-time PCR. Herein we describe a new method based on a fluorescently labeled PCR, followed by capillary electrophoresis. We amplified our target gene (prothrombin) and the internal control originating from genomic DNA (18S rRNA) in the same PCR tube and calculated the mean peak height ratio of the target:control gene for every cell clone sample. With this approach we identified stably transfected cell clones bearing the same transgene copy number. The results of our assay were confirmed by real-time PCR. Our method proves to be fast, low-cost, and reproducible compared with traditionally used methods. This assay can be used as a rapid screening tool for the determination of gene copy number in gene expression experiments.  相似文献   

13.
14.
Besides the application of conventional qualitative PCR as a valuable tool to enrich or identify specific sequences of nucleic acids, a new revolutionary technique for quantitative PCR determination has been introduced recently. It is based on real-time detection of PCR products revealed as a homogeneous accumulating signal generated by specific dyes. However, as far as we know, the influence of the variability of this technique on the reliability of the quantitative assay has not been thoroughly investigated. A national program of external quality assurance (EQA) for real-time PCR determination involving 42 Italian laboratories has been developed to assess the analytical performance of real-time PCR procedures. Participants were asked to perform a conventional experiment based on the use of an external reference curve (standard curve) for real-time detection of three cDNA samples with different concentrations of a specific target. In this paper the main analytical features of the standard curve have been investigated in an attempt to produce statistical diagnostics emerging from external quality control. Specific control charts were drawn to help biochemists take technical decisions aimed at improving the performance of their laboratories. Overall, our results indicated a subset of seven laboratories whose performance appeared to be markedly outside the limits for at least one of the standard curve features investigated. Our findings suggest the usefulness of the approach presented here for monitoring the heterogeneity of results produced by different laboratories and for selecting those laboratories that need technical advice on their performance.  相似文献   

15.
MethPrimer: designing primers for methylation PCRs   总被引:37,自引:0,他引:37  
MOTIVATION: DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. RESULTS: MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.  相似文献   

16.
Establishment of molecular diagnostics offering quantitative technology is directly associated with real-time polymerase chain reaction (PCR). This rapid, accurate and sensitive method requires careful execution, including reliable calibration standards. The storage of such standards is crucial to prevent nucleic acid decay and to ensure stable results using real-time PCR. In this study, a broad investigation of possible causes of DNA degradation during storage was performed, including GC-content of the fragments, long-term storage, rapid freeze-and-thaw experiments, genomic DNA and short DNA fragments of different species, the influence of shear stress and the effect of nuclease remaining after DNA isolation. Several known chemical DNA degradation mechanisms have been matched with the experimental data through a process of elimination. Protocols for practical application, as well as a theoretical model describing the underlying mechanisms of deviation of real-time PCR results due to decay of standard DNA, have been developed. Primary amines in the buffer composition, which enhance depurination of the DNA helix, and shear stress due to ice crystal formation, could be identified as major sources of interaction. This results in degradation of the standard DNA, as well as in the probability of occurrence of mismatches affecting real-time PCR performance.  相似文献   

17.
Liao S  Liu Y  Zeng J  Li X  Shao N  Mao A  Wang L  Ma J  Cen H  Wang Y  Zhang X  Zhang R  Wei Z  Wang X 《Bioconjugate chemistry》2010,21(12):2183-2189
In the efforts to explore an aptamer-based approach for target sensing and detection with higher sensitivity and specificity, instead of directly labeling aptamer with fluorophores, we proposed a new strategy by attaching a polymerase chain reaction (PCR) template to an oligonucleotide aptamer selected by systematic evolution of ligands by exponential enrichment (SELEX), so that after aptamer target binding, the template moiety serves as the PCR template in real-time quantitative PCR (RT-PCR), and therefore, the binding event can be reported by the following RT-PCR signals. Using the subtractive SELEX method, the oligonucleotide aptamers specific for the Fc fragment of mouse IgG were selected and subjected to coupling with the PCR dsDNA template by using overlap and the asymmetric extension PCR method. The target binding affinity of the PCR template tethered aptamer has been proven by electrophoretic mobility shift assay (EMSA), and further template tethered aptamer mediated real-time quantitative PCR (A-PCR) was conducted to validate the application for such a template tethered aptamer to be a sensitive probe for IgG detection. The results show that the protocols of A-PCR can detect 10-fold serial dilutions of the target, demonstrating a new mechanism to convert aptamer target binding events to amplified RT-PCR signal, and the feasibility of the PCR template tethered aptamer as a facile, specific, and sensitive target probing and detection is established. This new approach also has potential applications in multiple parallel target detection and analysis in a wide range of research fields.  相似文献   

18.
Succession of ecotypes, physiologically diverse strains with negligible rRNA sequence divergence, may explain the dominance of small, red-pigmented (phycoerythrin-rich) cyanobacteria in the autotrophic picoplankton of deep lakes (C. Postius and A. Ernst, Arch. Microbiol. 172:69-75, 1999). In order to test this hypothesis, it is necessary to determine the abundance of specific ecotypes or genotypes in a mixed background of phylogenetically similar organisms. In this study, we examined the performance of Taq nuclease assays (TNAs), PCR-based assays in which the amount of an amplicon is monitored by hydrolysis of a labeled oligonucleotide (TaqMan probe) when hybridized to the amplicon. High accuracy and a 7-order detection range made the real-time TNA superior to the corresponding end point technique. However, in samples containing mixtures of homologous target sequences, quantification can be biased due to limited specificity of PCR primers and probe oligonucleotides and due to accumulation of amplicons that are not detected by the TaqMan probe. A decrease in reaction efficiency, which can be recognized by direct monitoring of amplification, provides experimental evidence for the presence of such a problem and emphasizes the need for real-time technology in quantitative PCR. Use of specific primers and probes and control of amplification efficiency allow correct quantification of target DNA in the presence of an up to 10(4)-fold excess of phylogenetically similar DNA and of an up to 10(7)-fold excess of dissimilar DNA.  相似文献   

19.
Nogva HK  Rudi K 《BioTechniques》2004,37(2):246-8, 250-3
There is an underlying assumption in real-time PCR that the amplification efficiency is equal from the first cycles until a signal can be detected. In this study, we evaluated this assumption by analyzing genes with known gene copy number using real-time PCR comparative gene quantifications. Listeria monocytogenes has six 23S rRNA gene copies and one copy of the hlyA gene. We determined 23S rRNA gene copy numbers between 0.9 and 1.6 relative to hlyA when applying the comparative gene quantification approach. This paper focuses on the first cycles of PCR to explain the difference between known and determined gene copy numbers. Both theoretical and experimental evaluations were done. There are three different products (types 1-3) dominating in the first cycles. Type 1 is the original target, type 2 are undefined long products, while type 3 are products that accumulate during PCR. We evaluated the effects of type 1 and 2 products during the first cycles by cutting the target DNA with a restriction enzyme that cuts outside the boundaries of the PCR products. The digestion resulted in a presumed increased amplification efficiency for type 1 and 2 products. Differences in the amplification efficiencies between type 1, 2, and 3 products may explain part of the error in the gene copy number determinations using real-time PCR comparative gene quantifications. Future applications of real-time PCR quantifications should account for the effect of the first few PCR cycles on the conclusions drawn.  相似文献   

20.
The exact quantification of tiny amounts of nucleic acids in biological samples continues to remain a requirement in both the experimental and the diagnostic laboratory. Competitive PCR involves the coamplification of a target DNA sample with known amounts of a competitor DNA that shares most of the nucleotide sequence with the target; in this way, any predictable or unpredictable variable affecting PCR amplification has the same effect on both molecular species. Competitive PCR therefore permits the quantification of the absolute number of target molecules in comparison to the amount of competitor DNA. Although requiring intensive post-PCR manipulation, the accuracy of competitive PCR by far exceeds that of any other quantitative PCR procedure, including real-time PCR. This protocol covers all stages in the competitive PCR and RT-PCR methods, from the design and construction of competitor molecules, and the competitive PCR itself, to the analysis of data and quantification of target DNA. Once the correct primers are available, the protocol can be completed in about 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号