首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both oxidative stress and β-MHC expression are associated with pathological cardiac hypertrophy. β-adrenergic receptor stimulation plays an important role in cardiac hypertrophy. Recent studies have reported a negative interplay between opioid receptors and adrenoceptors in heart. This study investigated the effect of U50,488H (a selective κ-opioid receptor agonist) on myocardial oxidative stress and α- and β-MHC expression in isoproterenol-induced cardiac hypertrophy. Male Wistar rats were administered normal saline (control), isoproterenol (ISO) (5 mg/kg BW s.c. OD), and isoproterenol with U50,488H (0.4 and 0.6 mg/kg BW, i.p. OD) for 14 days. In a separate group, nor-binaltorphimine (nor-BNI) (0.5 mg/kg, BW, i.p.) (κ-receptor antagonist) was administered along with ISO and U50,488H. ISO administration caused significant increase in left ventricular (LV) wall thicknesses, LV mass in echocardiography, heart weight to body weight ratio, and myocyte size as compared to control. Both the doses of U50,488H offered significant protection against these changes. The higher dose of U50,488H significantly prevented ISO-induced increase in myocardial lipid peroxidation and depletion of myocardial antioxidants (glutathione, superoxide dismutase, and catalase), while a similar trend (although not significant) was observed with the lower dose also. ISO-induced myocardial fibrosis was also significantly attenuated by both the doses of U50,488H. Isoproterenol-induced β-MHC expression in the hypertrophied heart was not altered by either doses of U50,488H, however, the latter prevented the loss of myocardial α-MHC expression. All these effects of U50,488H were blocked by nor-BNI. This study provides the evidence that U50,488H reduced oxidative stress and preserved expression of α-MHC in isoproterenol-induced cardiac hypertrophy.  相似文献   

2.
Myocardial hypertrophy has been linked to the development of a variety of cardiovascular diseases, and is a risk factor for myocardial ischemia, arrhythmias, and sudden cardiac death. The objective of the present study was to evaluate the cardioprotective effects of Danshensu (DSS), a water-soluble active component of Danshen, on cardiac hypertrophy in rats. We are the first to report that DSS reversed Cx43 down-regulation in ventricular tissue. Cardiomyopathy in rats was produced using isoproterenol (Iso) treatment (2.5 mg/kg/d, s.c.) for seven days. DSS (3 and 10 mg/kg/d, i.p.) and Valsartan (Val) (10 mg/kg, i.g.) were administered on days 4-7 of Iso-treatment. Heart weight index, hemodynamic parameters, and ECG II parameters were monitored and recorded; protein expression of left ventricular connexin 43 (Cx43) and the activity of the redox system were assayed, and arrhythmias were produced using a coronary ligation/reperfusion procedure. The results demonstrated that DSS treatment significantly decreased heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW) ratios. The protective role of DSS against Iso-induced myocardial hypertrophy was further confirmed using ECG. The incidences of ventricular tachycardia and ventricular fibrillation (VT, VF) and arrhythmic scores were higher in the model group and were suppressed by DSS. DSS decreased the serum and myocardium levels of creatine kinase, lactate dehydrogenase, and malondialdehyde (CK, LDH, and MDA) and increased serum activity of superoxide dismutase (SOD) in a dose-dependent manner. Cx43 expression in the left ventricle was down-regulated, and there was significant oxidative stress in this model of cardiomyopathy. DSS reversed the down-regulated Cx43 protein levels and showed potent anti-oxidative activities and cellular protection. These data demonstrate that DSS can prevent cardiac I/R injury and improve cardiac function in a rat model of hypertrophy, the effects partially resulting from antioxidants and the protection from Cx43 expression.  相似文献   

3.
The Rho guanosine triphosphatases (Rho GTPases) family, including RhoA, plays an important role in angiotensin II (Ang II)-mediated cardiac hypertrophy. Farnesylpyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are vital for activation of RhoA. The present study was designed to investigate the role of FPPS in myocardial hypertrophy mediated with Ang II. First, we demonstrated that FPPS expression was elevated both in cultured neonatal cardiomyocytes (NCMs) following Ang II treatment and in the hypertrophic myocardium of 18-week-old spontaneously hypertensive rats (SHRs). Then, the importance of FPPS was assessed by RNA interference (RNAi) against FPPS in NCMs. Successful FPPS silencing in NCMs completely inhibited the hypertrophy marker genes of β-myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP), as well as cell surface area. Furthermore, FPPS knockdown prevented elevated RhoA activity compared with non-silenced controls. Similarly, increased-phosphorylation of p-38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK) by Ang II was attenuated. In vivo gene transfer also attenuated hypertrophic responses as indexed by left ventricular weight/body weight (LVW/BW), heart weight/body weight (HW/BW), and echocardiography, as well as expression of β-MHC and BNP mRNA in SHRs. In conclusion, FPPS with RhoA associated p-38 and JNK MAPK signaling might play an important role in Ang II-induced cardiac hypertrophy.  相似文献   

4.
目的:研究金丝桃苷(hyperoside, HYP)对主动脉弓缩窄所致小鼠病理性心肌肥厚的保护作用及其机制。方法:将32只C57BL/6J小鼠随机分为4组:假手术(Sham)组、单纯给药(HYP)组、主动脉弓缩窄(TAC)组及主动脉弓缩窄给药(TAC+HYP)组,每组8只。采用经典的主动脉弓缩窄术建立小鼠压力负荷型心肌肥厚模型。TAC术后4周,超声心动图仪检测心脏功能;左心室导管监测血流动力学指标;分离心脏、肺脏和胫骨计算心/体比、肺/体比和心/胫比,HE染色计算心肌细胞平均横截面积,Masson染色观察心肌纤维化程度,试剂盒检测心肌组织中SOD的活性和MDA的含量;DHE荧光探针检测心肌组织ROS生成量;Western blotting检测SIRT3、NOX 4、Collagen-1和Collagen-3蛋白表达,实时定量PCR检测SIRT3、ANP、α-MHC、β-MHC的m RNA表达情况。结果:与Sham组相比,TAC组小鼠的LVPWD值增加,LVSP和LVEDP值上升,LVEF、LVFS、E/A和±dp/dtmax值均降低;HM/BW、LW/BW和HW/TL值升高,心肌细胞横截面积增加;心肌组织胶原沉积加重;肥厚基因ANP的m RNA表达水平显著上升,α-MHC/β-MHC的比例倒置;心肌组织SOD活性降低,MDA和ROS生成量增加;SIRT3信号表达明显降低(均P<0.05)。给予HYP药物处理后,TAC+HYP组小鼠的心脏功能、血流动力学改变、心肌细胞肥厚程度、心肌组织纤维化和氧化应激水平均明显改善,并且心肌细胞SIRT3信号表达也显著增强(均P<0.05)。结论:HYP能够通过减轻心肌组织氧化应激损伤,抑制心肌纤维化进展,改善压力负荷引起的病理性心肌肥厚,且其作用机制可能与激活SIRT3信号有关。  相似文献   

5.
Cardiac hypertrophy is the strongest predictor of the development of heart failure, and anti-hypertrophic treatment holds the key to improving the clinical syndrome and increasing the survival rates for heart failure. The paraoxonase (PON) gene cluster (PC) protects against atherosclerosis and coronary artery diseases. However, the role of PC in the heart is largely unknown. To evaluate the roles of PC in cardiac hypertrophy, transgenic mice carrying the intact human PON1, PON2, and PON3 genes and their flanking sequences were studied. We demonstrated that the PC transgene (PC-Tg) protected mice from cardiac hypertrophy induced by Ang II; these mice had reduced heart weight/body weight ratios, decreased left ventricular wall thicknesses and increased fractional shortening compared with wild-type (WT) control. The same protective tendency was also observed with an Apoe-/- background. Mechanically, PC-Tg normalized the disequilibrium of matrix metalloproteinases (MMPs)/tissue inhibitors of MMPs (TIMPs) in hypertrophic hearts, which might contribute to the protective role of PC-Tg in cardiac fibrosis and, thus, protect against cardiac remodeling. Taken together, our results identify a novel anti-hypertrophic role for the PON gene cluster, suggesting a possible strategy for the treatment of cardiac hypertrophy through elevating the levels of the PON gene family.  相似文献   

6.
The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.  相似文献   

7.
Mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK, and p38) are upregulated in diabetic cardiomyopathy (DCM). Dual-specific phosphatase-1 (DUSP-1) has been reported to regulate the activity of MAPKs in cardiac hypertrophy; however, the role of DUSP-1 in regulating MAPKs activity in DCM is not known. MicroRNAs have been reported to regulate the expression of several genes in hypertrophied failing hearts. However, little is known about the microRNAs regulating DUSP-1 expression in diabetes-related cardiac hypertrophy. In the present study, we investigated the role of DUSP-1 and miR-200c in diabetes-induced cardiac hypertrophy. DCM was induced in Wistar rats by low-dose Streptozotocin high-fat diet for 12 weeks. Cardiac expression of ERK, p-38, JNK, DUSP-1, miR-200c, and hypertrophy markers (ANP and β-MHC) was studied in DCM in control rats and in high-glucose (HG)-treated rat neonatal cardiomyocytes. miR-200c inhibition was performed to validate DUSP-1 as target. A significant increase in phosphorylated ERK, p38, and JNK was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Expression of DUSP-1 was significantly decreased in diabetes group and in HG-treated cardiomyocytes (p < 0.05). Increased expression of miR-200c was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Inhibition of miR-200c induces the expression of the DUSP-1 causing decreased expression of phosphorylated ERK, p38, and JNK and attenuated cardiomyocyte hypertrophy in HG-treated cardiomyocytes. miR-200c plays a role in diabetes-associated cardiac hypertrophy by modulating expression of DUSP-1.  相似文献   

8.
We previously reported that Astragaloside IV (ASIV), a major active constituent of Astragalus membranaceus (Fisch) Bge protects against cardiac hypertrophy in rats induced by isoproterenol (Iso), however the mechanism underlying the protection remains unknown. Dysfunction of cardiac energy biosynthesis contributes to the hypertrophy and Nuclear Factor κB (NF-κB)/Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α) signaling gets involved in the dysfunction. The present study was designed to investigate the mechanism by which ASIV improves the cardiac hypertrophy with focuses on the NF-κB/PGC-1α signaling mediated energy biosynthesis. Sprague-Dawley (SD) rats or Neonatal Rat Ventricular Myocytes (NRVMs) were treated with Iso alone or in combination with ASIV. The results showed that combination with ASIV significantly attenuated the pathological changes, reduced the ratios of heart weight/body weight and Left ventricular weight/body weight, improved the cardiac hemodynamics, down-regulated mRNA expression of Atrial Natriuretic Peptide (ANP) and Brain Natriuretic Peptide (BNP), increased the ratio of ATP/AMP, and decreased the content of Free Fat Acid (FFA) in heart tissue of rats compared with Iso alone. In addition, pretreatment with ASIV significantly decreased the surface area and protein content, down-regulated mRNA expression of ANP and BNP, increased the ratio of ATP/AMP, and decreased the content of FFA in NRVMs compared with Iso alone. Furthermore, ASIV increased the protein expression of ATP5D, subunit of ATP synthase and PGC-1α, inhibited translocation of p65, subunit of NF-κB into nuclear fraction in both rats and NRVMs compared with Iso alone. Parthenolide (Par), the specific inhibitor of p65, exerted similar effects as ASIV in NRVMs. Knockdown of p65 with siRNA decreased the surface areas and increased PGC-1α expression of NRVMs compared with Iso alone. The results suggested that ASIV protects against Iso-induced cardiac hypertrophy through regulating NF-κB/PGC-1α signaling mediated energy biosynthesis.  相似文献   

9.
Evidence has shown that endoplasmic reticulum stress (ERS) is associated with the pathogenesis of cardiac hypertrophy. The aim of this study was to investigate whether direct alleviation of ER stress by 4-phenylbutyric acid (PBA), a known chemical chaperone drug, could attenuate pressure-overload cardiac hypertrophy in mice. The effects of orally administered PBA (100mg/kg body weight daily for a week) were examined using mice undergoing transverse aortic constriction (TAC-mice), an animal model to produce pressure overload. TAC application for 1 week led to a 1.8-fold increase in the ratio of the heart weight over body weight (HW/BW) and up-regulation of the hypertrophy markers ANF and BNF accompanied by up-regulation of ERS markers (GRP78, p-PERK, and p-elF2α). The oral administration of PBA to the TAC-mice reduced hypertrophy (19%) and severely downregulated the fibrosis-related genes (transforming growth factor-β1, phospho-smad2, and pro-collagen isoforms). We conclude that ERS is induced as a consequence of remodeling during pathological hypertrophy and that PBA may help to relieve ERS and play a protective role against cardiac hypertrophy and possibly heart failure. We suggest PBA as a novel therapeutic agent for cardiac hypertrophy and fibrosis.  相似文献   

10.
Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively (P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes (P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.  相似文献   

11.
Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)‐mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)‐stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)‐induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy‐related proteins. Meanwhile, PM markedly down‐regulated AngII‐induced translocation of p‐STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I‐201 or siRNA‐mediated depleted expression could alleviate AngII‐induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy‐related proteins and phosphorylated STAT3 in STAT3‐overexpressing cells, indicating that PM protected against AngII‐induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC‐induced cardiac hypertrophy, as determined by down‐regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy‐related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.  相似文献   

12.
Oxidative stress plays a critical role in the progression of pathological cardiac hypertrophy and heart failure. Because crocetin represses oxidative stress in vitro and in vivo , we have suggested that crocetin would repress cardiac hypertrophy by targeting oxidative stress-dependent signalling. We tested this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. The results showed that crocetin (1–10 μM) dose-dependently blocked cardiac hypertrophy induced by angiogensin II (Ang II; 1 μM) in vitro . Our data further revealed that crocetin (50 mg/kg/day) both prevented and reversed cardiac hypertrophy induced by aortic banding (AB), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardio-graphic parameters and gene expression of hypertrophic markers. The inhibitory effect of crocetin on cardiac hypertrophy is mediated by blocking the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-1/2 (MEK/ERK1/2) pathway and GATA binding protein 4 (GATA-4) activation. Further investigation demonstrated that crocetin inhibited inflammation by blocking nuclear factor kappa B (NF-κB) signalling and attenuated fibrosis and collagen synthesis by abrogating MEK-ERK1/2 signalling. Overall, our results indicate that crocetin, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis by suppression of ROS-dependent signalling pathways.  相似文献   

13.
The present study assessed the possible involvement of the renin-angiotensin system (RAS) and the sympathetic nervous system (SNS) in thyroxine (T4)-induced cardiac hypertrophy. Hemodynamic parameters, heart weight (HW), ratio of HW to body weight (HW/BW), and myocyte width were evaluated in absence of thyroid hormone (hypothyroidism) and after T4 administration. Male Wistar rats were used. Some were subjected to thyroidectomies, whereas hyperthyroidism was induced in others via daily intraperitoneal injection of T4 (25 or 100 microg x 100 g BW(-1) x day(-1)) for 7 days. In some cases, T4 administration was combined with the angiotensin I-converting enzyme inhibitor enalapril (Ena), with the angiotensin type 1 (AT1) receptor blocker losartan (Los) or with the beta-adrenergic blocker propanolol (Prop). Hemodynamics and morphology were then evaluated. Systolic blood pressure (SBP) was not altered by administration of either T4 alone or T4 in combination with the specific inhibitors. However, SBP decreased significantly in hypothyroid rats. An increased heart rate was seen after administration of either T4 alone or T4 in combination with either Los or Ena. Although the higher dose of T4 significantly increased HW, HW/BW increased in both T4-treated groups. Ena and Prop inhibited the increase in HW or HW/BW in hyperthyroid rats. Morphologically, both T4 dose levels significantly increased myocyte width, an occurrence prevented by RAS or SNS blockers. There was a good correlation between changes in HW/BW and myocyte width. These results indicate that T4-induced cardiac hypertrophy is associated with both the SNS and the RAS.  相似文献   

14.
Sleep deprivation (SD) is associated with cognitive deficits. It was found to affect the hippocampus region of the brain by impairing memory formation. This impairment is suggested to be caused by elevation in oxidative stress in the body, including the brain during SD. It was hypothesized that the methanolic extract of the fruits of Arbutus andrachne L. (Ericaceae) will prevent chronic SD-induced impairment of hippocampal memory via its antioxidative properties. The methanolic extract of the fruits of A. andrachne was evaluated for its beneficial properties to reverse SD-induced cognitive impairment in rats. Animals were sleep deprived for 8 weeks using a multiple platform model. The extract was administered i.p. at three doses (50, 200, and 500 mg/kg). Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). In addition, the hippocampus was dissected to analyze the following oxidative stress markers: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), and catalase. Chronic SD impaired short- and long-term memories (P < 0.05). Treatment of animals with A. andrachne fruit extract at all doses prevented long-term memory impairment induced by SD while such treatment prevented short-term memory impairment only at 200 and 500 mg/kg dose levels. Moreover, A. andrachne fruit extract normalized the reduction in the hippocampus GSH/GSSG ratio and activity of GPx, and catalase (P < 0.05) induced by chronic sleep deprivation. Chronic sleep deprivation impaired both short- and long-term memory formation, while methanolic extract of A. andrachne fruits reversed this impairment, probably through normalizing oxidative stress in the hippocampus.  相似文献   

15.
目的:探讨miRNAs(miR199a-5P、miR206、miR133a-3P、miR499-5P)在异丙肾上腺素(ISO)诱导大鼠心肌肥厚模型组中的表达变化;并运用生物信息学方法分析相关的主要信号通路及分子机制。方法:将16只SD雄性大鼠随机分为2组:对照组和ISO模型组,模型组给予ISO(1 mg/kg)诱导心肌肥厚模型,对照组给予等量生理盐水,均采用背部皮下多点注射。连续给药10 d后采用超声心动图测量舒张期室间隔厚度(IVSd)、舒张期左室后壁厚度(LVPWd)、左室舒张末期内径(LVDd)及心脏收缩功能(EF%);称量心脏重量(HW)、大鼠体重(BW),并计算心脏/体重比(HW/BW);心肌组织HE染色,Image J分析软件测量心肌细胞表面积;RT-qPCR检测大鼠心肌组织中4种miRNAs的表达情况。运用Targetscan、miRDB、miRwalk 数据库预测大鼠4种miRNAs可能的靶基因,FunRich软件分析预测靶基因相关的信号通路。结果:与正常组相比,模型组IVSd、LVPWd增厚,LV增大,EF%明显降低;HW、HW/BW增加;模型组心肌细胞体积明显增大,排列紊乱,细胞表面积增加;模型组miR199a-5P、miR206表达上调(P<0.05);miR133a-3P、miR499-5P表达下调(P<0.05)。应用生物信息学预测4种miRNAs的靶基因可能参与心肌肥厚相关的信号通路主要有:VEGF/VEGFR信号通路、ErbB受体信号通路等。结论:ISO诱导心肌肥厚导致miRNAs表达的改变,生物信息学预测4种miRNAs参与心肌肥厚相关的靶基因及其主要信号通路,这些研究为心肌肥厚的调控机制及其防治措施提供了新思路。  相似文献   

16.
目的:研究法舒地尔对异丙肾上腺素诱导大鼠心肌肥厚的影响及其机制。方法:除正常对照组外,其它SD大鼠均皮下注射异丙肾上腺素(Iso,5 mg/kg)建立心肌肥厚模型。大鼠随机分为4组:正常对照组、Iso模型组、法舒地尔低剂量组(Fas,5 mg/kg,i.p)和法舒地尔高剂量组(Fas,20 mg/kg,i.p),连续给药8周。给药结束后,血流动力学检测大鼠心率(HR)、左心室收缩压(LVSP)、左心室末舒张压(LVEDP)和左室压力变化最大速率(±dp/dtmax);分别测定大鼠体重(BW),心脏重量(HW),并计算HW/BW;大鼠心肌HE、Masson染色观察组织病理学改变;免疫组化法观察大鼠心肌组织ERK1、ERK2蛋白表达,RT-PCR观察ERK1、ERK2 mRNA的表达。结果:Iso模型组HR和LVEDP明显升高,LVSP和±dp/dtmax明显下降;HW/BW增大;心肌细胞体积变大,排列紊乱,胶原纤维增生;左心室组织ERK1、ERK2蛋白与mRNA表达上调。法舒地尔不同剂量干预后,心脏收缩和舒张能力得到改善,心指数明显下降,心肌细胞体积变小,纤维化减少,ERK1/2 mRNA表达下调,心肌组织损害均得到不同程度改善。结论:ERK1/2信号通路活化参与了异丙肾上腺素诱导的心肌肥厚,法舒地尔对异丙肾上腺素诱导的心肌肥厚具有明显改善作用,这可能与法舒地尔阻断ERK1、ERK2通路活化有关。  相似文献   

17.
Cardiac hypertrophy, including hypertension and valvular dysfunction, is a pathological feature of many cardiac diseases that ultimately leads to heart failure. Melatonin confers a protective role against pathological cardiac hypertrophy, but the underlying mechanisms remain elusive. In the present study, we hypothesized that melatonin protects against pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway. Male C57BL/6 mice that received adenovirus carrying cardiac-specific Atg5 (under the cTNT promoter; Ad-cTNT-Atg5) underwent transverse aortic constriction (TAC) or sham operation and received an intraperitoneal injection of melatonin (10 mg/kg/d), vehicle or LY294002 (10 mg/kg/d) for 8 weeks. Melatonin treatment for 8 weeks markedly attenuated cardiac hypertrophy and restored impaired cardiac function, as indicated by a decreased HW/BW ratio, reduced cell cross-sectional area and fibrosis, downregulated the mRNA levels of ANP, BNP, and β-MHC and ameliorated adverse effects on the LVEF and LVFS. Melatonin treatment also inhibited apoptosis and alleviated autophagy dysfunction. Furthermore, melatonin inhibited Akt/mTOR pathway activation, while these effects were blocked by LY294002. In addition, the effect of melatonin regulation on TAC-induced autophagy dysfunction was inhibited by LY294002 or cardiac-specific Atg5 overexpression. As expected, Akt/mTOR pathway inhibition or cardiac-specific Atg5 overexpression restrained melatonin alleviation of pressure overload-induced cardiac hypertrophy. These results demonstrated that melatonin ameliorated pressure overload-induced cardiac hypertrophy by attenuating Atg5-dependent autophagy and activating the Akt/mTOR pathway.  相似文献   

18.
Cardiac hypertrophy is frequently caused by pressure overload (i.e., high blood pressure or hypertension) and can lead to heart failure. The major objective of the present study was to investigate the proteomic changes in response to the development of left ventricular hypertrophy (LVH) induced by abdominal aortic banding (AB) and its prevention by antihypertensive treatment with angiotensin II receptor blocker (ARB) telmisartan. One week after AB and Sham surgery, rats were assigned into three groups: SHAM–control, aortic banding without treatment (AB–Ctrl) and aortic banding with telmisartan treatment (AB–Telmi; 5mg/kg/day for 8 weeks). Echocardiography, hemodynamics, and pathology were performed to assess LVH. Left ventricular myocardium was sampled. The analysis of proteomic proteins from myocardium was performed by two-dimensional gel electrophoresis and MALDI–TOF–MS. In AB–Ctrl, heart rate, systolic arterial blood pressure, diastolic blood pressure, left ventricular end systolic pressure, interventricular septal thickness at diastole, posterior wall thickness in diastole, heart weight (HW) and HW/body weight (BW) were increased, indicating that both hypertension and LVH developed. Telmisartan prevented hypertension and LVH. Concurrently, among numerous proteins, there were 17 that were differentially expressed among hypertrophic hearts, normal hearts, and the hearts where hypertrophic response was suppressed by ARB treatment. Primarily, proteins involved in cell structure, metabolism, stress and signal transduction exhibited up-regulations in LVH, providing cellular and molecular mechanism for hypertrophic development. These changes were prevented or greatly attenuated by telmisartan regimen. Interestingly, antioxidative-related heat shock protein 2 was detected neither in SHAM–Ctrl nor in AB–Ctrl, but in AB–Telmi. LVH is accompanied by series changes of protein expression. Both LVH and proteomic changes can be prevented by blockade of renin–angiotensin system with telmisartan. These protein alterations may constitute mechanistic pathways leading to hypertrophy development and experimental targets for novel therapeutic strategy.  相似文献   

19.
Cardiac hypertrophy and failure were induced in male Wistar rats by daily administration of 5 mg/kg isoproterenol for three weeks. Age-matched animals were used as normal control. To estimate the degree of hypertrophy, the wet heart weight (HW) to body weight (BW) ratio (HW/BW) was used as an index of the myocardial enlargement. By the 7th day of the treatment, the HW/BW ratio was increased to 4.24, as compared with the control value of 3.11. In this early stage of cardiomyopathy, the structure was characterized with small necrotic foci, enlarged myofilaments and swollen mitochondria. The electrical activity showed broadened action potentials with an elevated plateau phase, and increased membrane resistance and time constant. The amplitude of the twitch contractions was elevated. Continuing the treatment of the animals with catecholamine caused a decompensated heart failure by the 21st day. In this late stage, many and large necrotic foci could be observed in the myocardium. The mitochondria were fragmented, and the resistance of the sarcolemma decreased, and the electrical and contractile activity suppressed. The results indicate that an electrically and structurally compensated cardiac hypertrophy model can be produced by a short-term treatment of the animals with isoproterenol, while a long-term treatment causes a decompensated heart failure.  相似文献   

20.
In this study, we evaluated whether blocking myeloid differentiation factor-88 (MyD88) could decrease cardiac myocyte apoptosis following pressure overload. Adenovirus expressing dominant negative MyD88 (Ad5-dnMyD88) or Ad5-green fluorescent protein (GFP) (Ad5-GFP) was transfected into rat hearts (n = 8/group) immediately followed by aortic banding for 3 wk. One group of rats (n = 8) was subjected to aortic banding for 3 wk without transfection. Sham surgical operation (n = 8) served as control. The ratios of heart weight to body weight (HW/BW) and heart weight to tibia length (HW/TL) were calculated. Cardiomyocyte size was examined by FITC-labeled wheat germ agglutinin staining of membranes. Cardiac myocyte apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, and myocardial interstitial fibrosis was examined by Masson's Trichrome staining. Aortic banding significantly increased the HW/BW by 41.0% (0.44 +/- 0.013 vs. 0.31 +/- 0.008), HW/TL by 47.2% (42.7 +/- 1.30 vs. 29.0 +/- 0.69), cardiac myocyte size by 49.6%, and cardiac myocyte apoptosis by 11.5%, and myocardial fibrosis and decreased cardiac function compared with sham controls. Transfection of Ad5-dnMyD88 significantly reduced the HW/BW by 18.2% (0.36 +/- 0.006 vs. 0.44 +/- 0.013) and HW/TL by 22.3% (33.2 +/- 0.95 vs. 42.7 +/- 1.30) and decreased cardiomyocyte size by 56.8%, cardiac myocyte apoptosis by 76.2%, as well as fibrosis, and improved cardiac function compared with aortic-banded group. Our results suggest that MyD88 is an important component in the Toll-like receptor-4-mediated nuclear factor-kappaB activation pathway that contributes to the development of cardiac hypertrophy. Blockade of MyD88 significantly reduced cardiac hypertrophy, cardiac myocyte apoptosis, and improved cardiac function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号