首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protective effect of PUFA concentrate prepared from fish oil on isoproterenol-induced myocardial infarction in male albino rats was investigated with respect to changes in the levels of diagnostic marker enzymes, cholesterol, triglycerides, free fatty acids, phospholipids, reduced glutathione (GSH) and lipid peroxides (LPO). Administration of PUFA concentrate significantly prevented the isoproterenol-induced elevation in the levels of plasma diagnostic marker enzymes (ALT [93.5%], AST [95.6%], LDH [94.7%] and CPK [96.1%]). PUFA concentrate feeding exerted a significant antilipidemic effect against isoproterenol-induced myocardial infarction by reducing the levels of lipid components in plasma (cholesterol [71.5%], triglycerides [79.7%] and free fatty acids [70.7%] and heart tissue (cholesterol [81.4%], triglycerides [76.3%] and free fatty acids [78.6%]). A tendency to prevent the isoproterenol-induced phospholipids depletion (74.4%) in the myocardium of experimental rats was also observed. The level of lipid peroxidation was also found to be significantly lower in PUFA treated animals (2.72+/-0.15nmol/ml in plasma; 1.18+/-0.08nmol/mg protein in heart tissue) as compared to that of isoproterenol-injected groups (5.77+/-0.43nmol/ml in plasma; 2.14+/-0.15nmol/mg protein in heart tissue) of rats. Also the level of reduced GSH significantly higher in the heart tissue of PUFA administered experimental rats (5.65+/-0.98 microg/g) as compared to myocardial infarction induced control rats (2.39+/-0.18 microg/g). The results of the present study indicate that the overall cardioprotective effect of PUFA concentrate is probably related to its ability to inhibit lipid accumulation by its hypolipidaemic property.  相似文献   

2.
This study evaluated the hypothesis that neutral (APN) and dipeptidyl-IV (DPPIV) aminopeptidase activity levels would be critical for the susceptibility to arthritis in collagen-induced model (CIA). The macroscopic signs of arthritis in CIA rats were checked and peripheral blood, synovial fluid and synovial tissue from knee joint were withdrawn. Soluble (SF) and solubilized membrane-bound (MF) fractions from the synovial tissue and peripheral blood mononuclear cells (PBMCs) were obtained. APN and DPPIV activities were fluorometrically quantified. Severe swelling in both the entire hind paws was the minimum criterion to select CIA rats with arthritis. These arthritic rats had high APN in plasma, synovial fluid and SF of the synovial tissue, together with low APN and DPPIV in MF of PBMCs and hallmark histological changes in tibio-tarsal joint. CIA rats with no macroscopic signs of arthritis were diagnosed as resistant and they had low APN in MF of the synovial tissue, low DPPIV in SF of PBMCs and high DPPIV in plasma together with histological aspects of tibio-tarsal joint similar to healthy control rats. Data suggested that APN and DPPIV activity levels are related to the development of arthritis, being protective or inducer of the susceptibility. Understanding what is controlling the compartment-specific changes of these peptidases and looking at ways in which to manipulate their activities may lead to a better knowledge of the arthritic processes and novel treatments.  相似文献   

3.
Polyunsaturated phosphatidylcholine (EPL) is known to have a number of effects on lipid metabolism. We tested the drug on rat adipose tissue in vitro: stimulated lipolysis was inhibited without any effect on cyclic AMP level. Administration of EPL in rats enhanced the basal lipolysis and inhibited the hormone stimulated process. In fasting rats, the high plasma FFA level was further increased by EPL, while no modification on total esterified fatty acids, glucose and cholesterol contents was found. These effects could be due to the activity of EPL on various enzymes, for instance lipoprotein lipase, or to a general effect on membranes.  相似文献   

4.
This study investigated the effect of administration of α-lipoic acid (LA) on lipid metabolism in high fructose–fed insulin-resistant rats. High-fructose feeding (60 g/100 g diet) to normal rats resulted in a significant increase in the concentrations of cholesterol, triglycerides (TGs), free fatty acids (FFAs), and phospholipids in plasma, liver, kidney, and skeletal muscle. Reduced activities of lipoprotein lipase (LPL) and lecithin cholesterol acyl transferase (LCAT) and increased activity of the lipogenic enzyme hydroxymethylglutaryl–coenzyme A (HMG-CoA) reductase were observed in plasma and liver. High-density lipoprotein cholesterol (HDL-C) was significantly lowered and very low-density lipoprotein cholesterol (VLDL-C) and low-density lipoprotein cholesterol (LDL-C) were significantly elevated. Treatment with LA (35 mg/kg body weight intraperitoneal) reduced the effects of fructose. The rats showed near-normal levels of lipid components on plasma and tissues. Activities of key enzymes of lipid metabolism were also restored to normal values. Cholesterol distribution in the plasma lipoproteins was normalized, resulting in a favorable lipid profile. This study demonstrates that LA can alter lipid metabolism in fructose-fed insulin-resistant rats and may have implications in the treatment of insulin resistance.  相似文献   

5.
Conjugated docosahexaenoic acid inhibits lipid accumulation in rats   总被引:4,自引:0,他引:4  
Conjugated linoleic acid (CLA), which contains a conjugated double-bond system, and n-3 highly unsaturated fatty acids such as docosahexaenoic acid (DHA) are widely known to improve lipid metabolism. To examine the possibility that a fatty acid with a combination of these structural features might have stronger physiological effects, we prepared conjugated DHA (CDHA) by alkaline isomerization of DHA and examined its effects on lipid and sugar metabolism in rats. Rats were force fed with 200 mg of test oils [linoleic acid (LA), DHA, CLA or CDHA] everyday for 4 weeks. Compared with the animals from the other groups, those in the CDHA group showed a significant weight loss in white adipose tissue (57% of adipose tissue weight in the LA group) and significant decreases in the levels of liver triacylglycerol (TG; 65% of TG level in the LA group) as well as total cholesterol (TC; 88% of TC level in the LA group), indicating suppression of lipid accumulation in the liver and adipose tissue. In addition, plasma TG and TC levels significantly decreased (69% of TG level and 82% of TC level in the LA group), indicating improved lipid metabolism. In the liver, the fatty acid synthesis system was inhibited and the fatty acid beta-oxidation system was activated, whereas the free fatty acid, glucose and tumor necrosis factor alpha levels in the plasma were lowered following CDHA administration. Hence, intake of CDHA appears to suppress the accumulation of fat in the liver and epididymal adipose tissue and improves lipid and sugar metabolism in rats.  相似文献   

6.
Significant interactions exist between fatty acids and the endocrine system. Hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn lead to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids (PUFA) are also precursors for eicosanoids including prostaglandins, leukotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn alter both hormone and neuropeptide concentrations and their receptors. Saturated and trans fatty acids (TFA) decrease insulin concentration leading to insulin resistance. In contrast, PUFA increase plasma insulin concentration and decrease insulin resistance. In humans, omega-3 PUFA alter the levels of opioid peptides in plasma.  相似文献   

7.
Severe rheumatoid cachexia is associated with pronounced loss of muscle and fat mass in patients with advanced rheumatoid arthritis. This condition is associated with dyslipidemia and predisposition to cardiovascular diseases. Circulating levels of triglycerides (TG) and free fatty acids (FFA) have not yet been consistently defined in severe arthritis. Similarly, the metabolism of these lipids in the arthritic liver has not yet been clarified. Aiming at filling these gaps this study presents a characterization of the circulating lipid profile and of the fatty acids uptake and metabolism in perfused livers of rats with adjuvant-induced arthritis. The levels of TG and total cholesterol were reduced in both serum (10–20%) and liver (20–35%) of arthritic rats. The levels of circulating FFA were 40% higher in arthritic rats, possibly in consequence of cytokine-induced adipose tissue lipolysis. Hepatic uptake and oxidation of palmitic and oleic acids was higher in arthritic livers. The phenomenon results possibly from a more oxidized state of the arthritic liver. Indeed, NADPH/NADP+ and NADH/NAD+ ratios were 30% lower in arthritic livers, which additionally presented higher activities of the citric acid cycle driven by both endogenous and exogenous FFA. The lower levels of circulating and hepatic TG possibly are caused by an increased oxidation associated to a reduced synthesis of fatty acids in arthritic livers. These results reveal that the lipid hepatic metabolism in arthritic rats presents a strong catabolic tendency, a condition that should contribute to the marked cachexia described for arthritic rats and possibly for the severe rheumatoid arthritis.  相似文献   

8.
A combined gas chromatographic-mass spectrometric method (selected ion monitoring) to determine C6-C10-dicarboxylic acids in liver and kidney tissue is reported. Alterations in tissue concentrations of the dicarboxylic acids were reflected in urinary excretions, i.e., diabetic rats with 'ketotic dicarboxylic aciduria' had corresponding elevated concentrations of short-chain dicarboxylic acids in liver and kidney tissue. Stimulation of the enzymes of fatty acid oxidation by clofibrate was, as a sole event, not sufficient to cause elevated tissue concentrations of dicarboxylic acids, nor did it result in dicarboxylic aciduria, probably because of a relative lack in substrate (fatty acids) compared to the diabetic ketotic state, where lipolysis is increased. These results strongly indicate that 'ketotic dicarboxylic aciduria' parallels the activity of the lipid metabolism at cellular level, and that it is not just a matter of renal handling.  相似文献   

9.
Intrauterine growth restriction is associated with chronically elevated levels of serum fatty acids and reduced glucose-stimulated insulin secretion. Lipid metabolism in pancreatic beta cells is critical for the regulation of insulin secretion, and the chronic exposure to fatty acids results in higher palmitate oxidation rates and an altered insulin response to glucose. Using a rat model of isocaloric protein restriction, we examined whether pre- and postnatal protein malnutrition influences the properties of pancreatic islet carnitine palmitoyltransferase-1 (liver isoform, L-CPT-1), a rate-limiting enzyme that regulates fatty acid oxidation in mitochondria. The activity of L-CPT-1 in pancreatic islets increased in the low protein (LP), although the L-CPT-1 mRNA levels were unaffected by malnutrition. The susceptibility of enzyme to inhibition by malonyl-CoA was unaltered and the content of malonyl-CoA was reduced in LP cells. Because the mitochondrial oxidation of fatty acids is related to the altered expression of a number of genes encoding proteins involved in insulin secretion, the levels of expression of insulin and GLUT-2 mRNA were assessed. A reduced expression of both genes was observed in malnourished rats. These results provide further evidence that increased L-CPT-1 activity and changes in gene expression in pancreatic islets may be involved in the reduced insulin secretion seen in malnourished rats.  相似文献   

10.
The effect was examined of dietary sericin on the lipid and carbohydrate metabolism in rats fed with a high-fat diet. The rats were fed with a 20% beef tallow diet with or without sericin at the level of 4% for 5 weeks. The final body weight and white adipose tissue weight were unaffected by dietary manipulation. The consumption of sericin significantly reduced the serum levels of triglyceride, cholesterol, phospholipids and free fatty acids. Serum very-low-density lipoprotein (VLDL)-triglyceride, VLDL-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL-phospholipids were also significantly reduced by the sericin intake. Liver triglyceride and the activities of glucose 6-phosphate dehydrogenase and malic enzyme, the lipogenic enzymes, were also reduced by the sericin intake. Dietary sericin caused a marked elevation in serum adiponectin. The consumption of sericin suppressed the increases in plasma glucose and insulin levels after an intraperitoneal glucose injection. These results imply the usefulness of sericin for improving the lipid and carbohydrate metabolism in rats fed on a high-fat diet.  相似文献   

11.
In models of type 2 diabetes the expression of beta-cell genes is altered, but these changes have not fully explained the impairment in beta-cell function. We hypothesized that changes in beta-cell phenotype and global alterations in both carbohydrate and lipid pathways are likely to contribute to secretory abnormalities. Therefore, expression of genes involved in carbohydrate and lipid metabolism were analyzed in islets 4 weeks after 85-95% partial pancreatectomy (Px) when beta-cells have impaired glucose-induced insulin secretion and ATP synthesis. Px rats after 1 week developed mild to severe hyperglycemia that was stable for the next 3 weeks, whereas neither plasma triglyceride, non-esterified fatty acid, or islet triglyceride levels were altered. Expression of peroxisome proliferator-activated receptors (PPARs), with several target genes, were reciprocally regulated; PPARalpha was markedly reduced even at low level hyperglycemia, whereas PPARgamma was progressively increased with increasing hyperglycemia. Uncoupling protein 2 (UCP-2) was increased as were other genes barely expressed in sham islets including lactate dehydrogenase-A (LDH-A), lactate (monocarboxylate) transporters, glucose-6-phosphatase, fructose-1,6-bisphosphatase, 12-lipoxygenase, and cyclooxygenase 2. On the other hand, the expression of beta-cell-associated genes, insulin, and GLUT2 were decreased. Treating Px rats with phlorizin normalized hyperglycemia without effecting plasma fatty acids and reversed the changes in gene expression implicating the importance of hyperglycemia per se in the loss of beta-cell phenotype. In addition, parallel changes were observed in beta-cell-enriched tissue dissected by laser capture microdissection from the central core of islets. In conclusion, chronic hyperglycemia leads to a critical loss of beta-cell differentiation with altered expression of genes involved in multiple metabolic pathways diversionary to normal beta-cell glucose metabolism. This global maladaptation in gene expression at the time of increased secretory demand may contribute to the beta-cell dysfunction found in diabetes.  相似文献   

12.
Hyperalphalipoproteinemia, characterized by increased plasma concentrations of apoA-I and of HDL lipid and protein, was observed in rats treated with triiodothyronine (T(3)) for 7 days. The increase in the plasma HDL apoproteins was general for apoC, apoE plus A-IV, and apoA-I, as determined by isoelectric focusing. Hypotriglyceridemia, characterized by decreased concentrations of VLDL and apoB, was also observed in the hyperthyroid state. Although in the mildly hypothyroid animals (propylthiouracil-treated), hepatic metabolism of free fatty acid is shifted toward esterification to triglyceride and VLDL formation, as we reported previously, plasma HDL and apoA-I concentrations were not different from control plasma values, while the d 1.006-1.063 g/ml (IDL + LDL) lipoprotein fraction tended to be increased. In general, the proportion of apoE in the (IDL + LDL) fraction of the hypothyroid rat was greater than in controls and hyperthyroid animals, while the proportion of apoE tended to be lower in VLDL from both hypo- and hyperthyroid rats than in VLDL from controls. An enhanced release of apoA-I by perfused livers isolated from rats treated with T(3) was also observed; this enhanced output of apoA-I may explain, in part, the hyperalphalipoproteinemia observed in these rats. The depressed net output of apoA-I in vitro by perfused livers from rats treated with propylthiouracil (PTU) was not expressed in a statistically significant diminished plasma concentration of HDL or apoA-I in the intact animals. Treatment with T(3) also resulted in modification of the content of essential fatty acids in various lipid classes. Linoleic acid residues were significantly reduced and arachidonic acid content was increased in plasma phospholipids and esterified cholesterol in T(3)-treated rats. However, the relative fatty acid composition of unesterified fatty acids and triglyceride fatty acids was not altered by T(3) treatment. PTU treatment had no effect on fatty acid distribution in any of the plasma lipids. Secretion of biliary lipids was increased in perfused livers from T(3)-treated rats, while treatment with PTU did not affect release of lipids in the bile. These observations suggest a regulatory role for thyroid hormones that determine concentration and composition of plasma HDL and other lipoproteins.-Wilcox, H. G., W. G. Keyes, T. A. Hale, R. Frank, D. W. Morgan, and M. Heimberg. Effects of triiodothyronine and propylthiouracil on plasma lipoproteins in male rats.  相似文献   

13.
胶原诱导型关节炎大鼠的关节影像学特点   总被引:2,自引:0,他引:2  
目的旨在分析CIA X线片四肢关节的破坏特点,揭示CIA大鼠关节破坏的规律,为规范评分方案提供依据。方法采用П型胶原和弗氏完全佐剂皮下注射清洁级Wistar大鼠,造模成功(每批10只,共3次)后第35天行全身X线钼靶照片,以正常组作为对照、每只大鼠评价96块骨破坏(erosion)和100个关节间隙(joint space narrowing,JSN);处死动物,取左前肢和右后肢近端第3足趾关节苏木素-伊红(HE)染色,评价中性粒细胞、淋巴细胞、浆细胞浸润、滑膜增生和软骨破坏的情况。结果造模成功后CIA大鼠关节出现明显的红肿,活动受限;HE病理显示,CIA关节存在明显的中性粒细胞、淋巴细胞和浆细胞浸润,滑膜增生,纤维组织增生,软骨破坏;X线片分析结果显示:①广泛性骨质疏松,边缘性骨质侵蚀,关节间隙狭窄或增宽,部分踝关节间隙消失,关节相互融合甚至骨性强直。②67%的骨出现erosion,JSN影响为78%,关节破坏以中、重度为主;③远端、近端趾间关节和踝关节发病率高,损害严重,掌趾关节发病率低,破坏较轻。④后肢关节破坏重于前肢(P〈0.01),左右肢没有显著性差异(P〉0.05)。结论①滑膜是CIA炎症反应启动的主要病灶,与骨交界的滑膜和血管翳造成了CIA的骨质破坏;②CIA影像学表现关节破坏严重,以远端、近端趾间关节和踝关节为主,这些关节可作为评价破坏程度的选择。本研究对于深入CIA关节破坏的病因病理和进一步规范X线片评分方案具有一定意义。  相似文献   

14.
Administration of pertussis vaccine to hamsters markedly affected their lipid metabolism. Four days after the administration of the vaccine a severe fatty liver was observed. Concomitantly, a rise in the serum levels of free fatty acids, triacylglycerols and ketone bodies was detected. It is suggested that an altered regulation of adipose tissue lipolysis might be at least partially responsible for the observed effects.  相似文献   

15.
We studied free radical generation, lipid peroxidation and the levels of essential fatty acids and of their metabolites in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Both superoxide and hydrogen peroxide generation by peripheral leukocytes but not malondialdehyde levels, as measured by thiobarbituric acid assay, were found to be significantly enhanced both in RA and SLE. Fatty acid analysis of the plasma PL fraction revealed that both LA and ALA metabolites are significantly decreased in RA and SLE compared to controls. These results suggest that essential fatty acid metabolism is altered in RA and SLE.  相似文献   

16.
The metabolic syndrome and the hepatic fatty acid drainage hypothesis   总被引:4,自引:0,他引:4  
Much data indicates that lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver metabolism towards activation of peroxisome proliferator activated receptor (PPAR)alpha-regulated fatty acid catabolism in mitochondria. Feeding rats with lipid lowering agents leads to hypolipidemia, possibly by increased channeling of fatty acids to mitochondrial fatty acid oxidation at the expense of triglyceride synthesis. Our hypothesis is that increased hepatic fatty acid oxidation and ketogenesis drain fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects on fat mass accumulation and improved peripheral insulin sensitivity. To investigate this theory we employ modified fatty acids that change the plasma profile from atherogenic to cardioprotective. One of these novel agents, tetradecylthioacetic acid (TTA), is of particular interest due to its beneficial effects on lipid transport and utilization. These hypolipidemic effects are associated with increased fatty acid oxidation and altered energy state parameters of the liver. Experiments in PPAR alpha-null mice have demonstrated that the effects hypolipidemic of TTA cannot be explained by altered PPAR alpha regulation alone. TTA also activates the other PPARs (e.g., PPAR delta) and this might compensate for deficiency of PPAR alpha. Altogether, TTA-mediated clearance of blood triglycerides may result from a lowered level of apo C-III, with a subsequently induction of hepatic lipoprotein lipase activity and (re)uptake of fatty acids from very low density lipoprotein (VLDL). This is associated with an increased hepatic capacity for fatty acid oxidation, causing drainage of fatty acids from the blood stream. This can ultimately be linked to hypolipidemia, anti-adiposity, and improved insulin sensitivity.  相似文献   

17.
18.
Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors.  相似文献   

19.
A non-linear relationship between the plasma non-esterified fatty acid concentration and the percentage of free plasma tryptophan was found in rats in different nutritional states, although non-esterified fatty acids are not the only factors determining the percentage of free tryptophan. This relationship was not seen in rats injured by limb ischaemia. The effect of drugs causing rapid increases in the plasma non-esterified fatty acid concentration was also studied. Isoprenaline decreased the total plasma tryptophan concentration. Dichloroisoprenaline caused a sustained increase in the plasma non-esterified fatty acid concentration which was accompanied by an increase in the concentration of free plasma tryptophan and followed by a fall in the concentration of total tryptophan. The loss of tryptophan from the plasma was attributed to an altered distribution of tryptophan in the extracellular space rather than to increased metabolism. This interpretation was supported by determinations of the irreversible disposal rate of plasma tryptophan which in uninjured rats was unaffected by the concentration of free plasma tryptophan. In the injured rats this rate was unaltered during limb ischaemia but was decreased after removal of the tourniquets; increased competition for tissue entry by other neutral amino acids and the fall in body temperature could be factors in this fall.  相似文献   

20.
In view of the importance of membrane fluidity on cell functions, the influence of phospholipid acyl groups on membrane fluidity, and the changes in lipid metabolism induced by copper (Cu) deficiency, this study was designed to examine the influence of dietary Cu on the lipid composition and fluidity of liver plasma membranes. Male Sprague-Dawley rats were divided into two dietary treatments, namely Cu deficient and Cu adequate. After 8 weeks of treatment, liver plasma membranes were isolated by sucrose density gradient centrifugation. The lipid fluidity of plasma membranes, as assessed by the intramolecular eximer fluorescence of 1,3-di(1-pyrenyl) propane, was significantly depressed by Cu deficiency. In addition, Cu deficiency significantly reduced the content of arachidonic and palmitoleic acids but increased the docosatetraenoic and docosahexaenoic acids of membrane phospholipids. This alteration in unsaturated phospholipid fatty acid composition, especially the large reduction in arachidonic acid, may have contributed to the depressed membrane fluidity. Furthermore, Cu deficiency also markedly altered the fatty acid composition of the triacylglycerols associated with the plasma membranes. Thus, the lipid composition and fluidity of liver plasma membranes are responsive to the animal's Cu status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号