首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-Aminocyclopropane-l-carboxylate deaminase (ACCD) is a pyridoxal 5/-phosphate dependent enzyme that shows deaminase activity toward ACC, a precursor of plant hormone ethylene. ACCD from some soil bacteria has been reported to be able to break the cyclopropane ring of ACC to yield a-ketobutyrate and ammonia. We reported the crystal structure of ACCD from the yeast Hansenula saturnus in the absence/presence of substrate ACC, and proposed its ingenious reaction mechanisms. In order to study the enzyme further, we overexpressed the ACCD homologue protein (phAHP) from the fully decoded hyperthermophilic archearon, Pyrococcus horikoshii OT3. However, phAHP does not show ACCD activity at high temperature as well as at room temperature, though it has significant sequence similarity. Instead of ACCD activity, the GC-MS analysis and enzymatic method show that phAHP has deaminase activity toward L and D-serine. Here, we present the crystal structures of the native and ACC-complexed phAHP. The overall topology of the phAHP structure is very similar to that of ACCD; however, critical differences were observed around the active site. Here, the differences of enzymatic activity between phAHP and ACCD are discussed based on the structural differences of these two proteins. We suggest that the catalytic disagreement between these two enzymes comes from the difference of the residues near the pyridine ring of pyridoxal 5'-phosphate (PLP), not the difference of the catalytic residues themselves. We also propose a condition necessary in the primary sequence to have ACCD activity.  相似文献   

2.
The growth of canola plants treated with either wild-type Pseudomonas putida UW4 or a 1-aminocyclopropane-1-carboxylate (ACC) deaminase minus mutant of this strain was monitored in the presence of inhibitory levels of salt, i.e., 1.0 mol/L at 10 degrees C and 150 mmol/L at 20 degrees C. This strain is psychrotolerant with a maximal growth rate of approximately 30 degrees C and the ability to proliferate at 4 degrees C. Although plant growth was inhibited dramatically by the addition of 1.0 mol/L salt at 10 degrees C and only slightly by 150 mmol/L salt at 20 degrees C under both sets of conditions, the addition of the wild type but not the mutant strain of P. putida UW4 significantly improved plant growth. This result confirms the previous suggestion that bacterial strains that contain ACC deaminase confer salt tolerance to plants by lowering salt-induced ethylene synthesis.  相似文献   

3.
In addition to the well-known roles of indoleacetic acid and cytokinin in crown gall formation, the plant hormone ethylene also plays an important role in this process. Many plant growth-promoting bacteria (PGPB) encode the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which can degrade ACC, the immediate precursor of ethylene in plants, to alpha-ketobutyrate and ammonia and thereby lower plant ethylene levels. To study the effect of ACC deaminase on crown gall development, an ACC deaminase gene from the PGPB Pseudomonas putida UW4 was introduced into Agrobacterium tumefaciens C58, so that the effect of ACC deaminase activity on tumour formation in tomato and castor bean plants could be assessed. Plants were also coinoculated with A. tumefaciens C58 and P. putida UW4 or P. putida UW4-acdS- (an ACC deaminase minus mutant strain). In both types of experiments, it was observed that the presence of ACC deaminase generally inhibited tumour development on both tomato and castor bean plants.  相似文献   

4.
Thibodeaux CJ  Liu HW 《Biochemistry》2011,50(11):1950-1962
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.  相似文献   

5.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

6.
Fumarate hydratase (EC 4.2.1.2) from the extremely thermophilic archaeobacterium Solfolobus solfataricus has been purified to homogeneity by a rapid purification procedure using affinity chromatography and high-performance size-exclusion chromatography, and the enzyme's physical and biochemical properties have been determined. The native enzyme has a molecular mass of 170 kDa and is composed of identical subunits with a molecular mass of 45 kDa, thus indicating a tetrameric structure similar to fumarases isolated from other organisms. The enzyme was active at temperatures ranging from 40 degrees C to 90 degrees C, with a maximum activity at 85 degrees C. The pH optimum for generation of fumarate was found to be pH 8.0. The enzyme showed high stability to denaturation by heat and organic solvents.  相似文献   

7.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, EC 4.4.1.14, was purified to homogeneity from etiolated mung bean hypocotyl segments. This was made possible by the ability to elevate the enzyme level markedly through hormone treatments and by stabilization of the enzyme with high phosphate concentrations. The four-step procedure resulted in 1050-fold purification with 25% yield, and consisted of stepwise elution from hydroxylapatite, chromatography on phenyl-Sepharose CL-4B, gradient elution from hydroxylapatite, and fast protein liquid chromatography (FPLC) on a MonoQ anion-exchange column. FPLC-purified ACC synthase migrated as a single band of Mr 65,000 on denaturing polyacrylamide gel electrophoresis. The molecular weight of native enzyme by Bio-Gel A-0.5 M chromatography was 125,000, indicating that the enzyme probably exists as a dimer of identical 65,000 Mr subunits. The mung bean ACC synthase exhibited a pH optimum of 8.0 for activity and a Km for S-adenosylmethionine (AdoMet) of 55 microM at 30 degrees C. It exhibited an Arrhenius activation energy of 12 kcal mol-1 degree-1 and was inactivated at temperatures in excess of 40 degrees C. The specific activity for pure ACC synthase was 21 mumol of ACC formed/mg protein/h when determined under optimal conditions with 400 microM AdoMet.  相似文献   

8.
Two cationic phenoxazine dyes, meldola blue (MB) and nile blue (NB), and the structurally related phenothiazine, methylene blue (MethB), were found to act as complex inhibitors of human plasma cholinesterase (butyrylcholinesterase, BChE). Studied at 25 degrees C, in 100mM MOPS buffer (pH 8.0), with butyrylthiocholine as substrate, the kinetic pattern of inhibition indicated cooperative I binding at 2 sites. Intrinsic K' values ( identical with[I](0.5)(2) extrapolated to [S]=0) for MB, NB and MethB were 0.64+/-0.05, 0.085+/-0.026 and 0.42+/-0.04 microM, respectively. Under the same experimental conditions the dyes acted as single-occupancy, hyperbolic-mixed inhibitors of electric eel acetylcholinesterase (AChE), with K(i)=0.035+/-0.010, 0.026+/-0.0034 and 0.017+/-0.0063 microM (for MB, NB, MethB); alpha (coefficient of competitive interaction)=1.8-2.4 and beta (coefficient of noncompetitive interaction)=0.15-0.28. The complexity of the BChE inhibitory effect of phenoxazine/phenothiazine dyes contrasted with that of conventional ChE inhibitors which cause single-occupancy (n=1), competitive or mixed inhibition in both AChE and BChE and signaled novel modes of ligand interaction at (or remote from) the active site gorge of the latter enzyme.  相似文献   

9.
Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases   总被引:5,自引:0,他引:5  
Molecular mechanisms of irreversible thermal inactivation of two bacterial alpha-amylases, from the mesophile Bacillus amyloliquefaciens and from the thermophile Bacillus stearothermophilus, have been elucidated in the pH range of relevance to enzymatic catalysis. At pH 5.0, 6.5, and 8.0, B. amyloliquefaciens alpha-amylase irreversibly inactivates due to a monomolecular conformational process, formation of incorrect (scrambled) structures which subsequently undergo aggregation. At the last pH, this process can be suppressed by the presence of the substrate starch and consequently a covalent process, deamidation of asparagine and/or glutamine residues, becomes the cause of loss of enzymatic activity at 90 degrees C. Monomolecular conformational scrambling is the predominant cause of irreversible inactivation of B. stearothermophilus alpha-amylase at 90 degrees C at pH 5.0, 6.5, and 8.0. At pH 6.5 another contributing inactivation mechanism is the deamidation of amide residues, and at pH 8.0, O2 oxidation of the enzyme's cysteine residue.  相似文献   

10.
Toluene dioxygenase (Tod) enzyme activity can be measured by the conversion of indole to indigo. Indigo is measured spectrophotometrically at 600 nm. However, this method is inadequate to measure the whole-cell enzyme activity when interference by suspended biomass is present. Indoxyl is a highly fluorescent intermediate in the conversion of indole to indigo by Tod. A fluorescence-based assay was developed and applied to monitor Tod activity in whole cells of Pseudomonas putida F1 biofilm from a continuously operated biofilter. Suspended growth studies with pure cultures indicated that indoxyl, as measured by fluorescence, correlated with indigo production (r(2)=0.89) as measured by spectrophotometry. Whole-cell enzyme activity was followed during growth on a minimal medium containing toluene. The maximum normalized whole cell enzyme activity of 19+/-1.5x10(-4) mg indigo (mg protein)(-1) min(-1) was reached during early stationary phase. P. putida F1 cells from a biofilm grown on vapor phase toluene had a normalized whole-cell enzyme activity of 5.0+/-0.2x10(-4) mg indigo (mg protein)(-1) min(-1). The half-life of whole-cell enzyme activity was estimated to be between 5.5 and 8 h in both suspended and biofilm growth conditions.  相似文献   

11.
A cyanide-degrading enzyme from Bacillus pumilus C1 has been purified and characterized. This enzyme consisted of three polypeptides of 45.6, 44.6, and 41.2 kDa; the molecular mass by gel filtration was 417 kDa. Electron microscopy revealed a multimeric, rod-shaped protein approximately 9 by 50 nm. Cyanide was rapidly degraded to formate and ammonia. Enzyme activity was optimal at 37 degrees C and pH 7.8 to 8.0. Activity was enhanced by Sc3+, Cr3+, Fe3+, and Tb3+; enhancement was independent of metal ion concentration at concentrations above 5 microM. Reversible enhancement of enzymatic activity by azide was maximal at 4.5 mM azide and increased with time. No activity was recorded with the cyanide substrate analogs CNO-, SCN-, CH3CN, and N3- and the possible degradation intermediate HCONH2. Kinetic studies indicated a Km of 2.56 +/- 0.48 mM for cyanide and a Vmax of 88.03 +/- 4.67 mmol of cyanide per min/mg/liter. The Km increased approximately twofold in the presence of 10 microM Cr3+ to 5.28 +/- 0.38 mM for cyanide, and the Vmax increased to 197.11 +/- 8.51 mmol of cyanide per min/mg/liter. We propose naming this enzyme cyanide dihydratase.  相似文献   

12.
Glycolytic enzyme phosphofructokinase (PFK) from sea-bass liver shows inhibition for ATP4- and MG-ATP2-, and ATP4- is a competitive inhibitor with respect to MG-ATP2-. Free Mg2+ behaves as a mixed inhibitor on the kinetic with respect to the true enzyme substrate Mg-ATP2-, and eliminates the inhibition effect of this substrate. The kinetics with respect to Mg-ATP2- at non-inhibiting concentrations is not visibly affected by temperature of pH variation. The inhibiting effect of Mg-ATP2- is more marked at 22 and 10 degrees C (of three assayed temperatures 22, 15 and 10 degrees C and at physiological pH 6.8) as opposed to the maximum activity pH (8.0).  相似文献   

13.
The proteolytic activity and thermal stability of the enzyme complex of cell suspension from pig and bovine pancreas glands was compared with those of pancreatin. The enzyme complex displayed the highest thermal stability and activity at 50 degrees C. The kinetic constants, energies of activation and inactivation of the enzyme complex, and pH optimum (7.0 +/- 0.1) at which this complex had the maximum proteolytic activity were determined. Pancreatin had a pH optimum of 8.0 +/- 0.1.  相似文献   

14.
Enzymes, especially proteases, have become an important and indispensable part of the processes used by the modern food and feed industry to produce a large and diversified range of products for human and animal consumption. A cysteine protease, used extensively in the food industry, was purified from germinated wheat Triticum aestivum (cv. Giza 164) grains through a simple reproducible method consisting of extraction, ion exchange chromatography and gel filtration. The molecular weight of the enzyme was estimated to be 61000+/-1200-62000+/-1500 by SDS-PAGE and gel filtration. The cysteine protease had an isoelectric point and pH optimum at 4.4 and 4.0, respectively. The enzyme exhibited more activity toward azocasein than the other examined substrates with K(m) 2.8+/-0.15 mg azocasein/ml. In addition, it had a temperature optimum of 50 degrees C and based on a heat stability study 55% of its initial activity remained after preincubation of the enzyme at 50 degrees C for 30 min prior to substrate addition. All the examined metal cations inhibited the enzyme except Co(2+), Mg(2+), Mn(2+) and Li(+). The proteolytic activity of the enzyme was inhibited by thiol-specific inhibitors, whereas iodoacetate and p-hydroxymercuribenzoate caused a competitive inhibition with Ki values 6+/-0.3 mM and 21+/-1.2 microM, respectively. Soybean trypsin inhibitor had no effect on the enzyme. The enzyme activity remained almost constant for 150 days of storage at -20 degrees C. The properties of this enzyme, temperature and pH optima, substrate specificity, stability and sensitivity to inhibitors or activators, meet the prerequisites needed for food industries.  相似文献   

15.
Fungi were screened for their ability to produce alpha-amylase by a plate culture method. Penicillium chrysogenum showed high enzymatic activity. Alpha-amylase production by P. chrysogenum cultivated in liquid media containing maltose (2%) reached its maximum at 6-8 days, at 30 degrees C, with a level of 155 U ml(-1). Some general properties of the enzyme were investigated. The optimum reaction pH and temperature were 5.0 and 30-40 degrees C, respectively. The enzyme was stable at a pH range from 5.0-6.0 and at 30 degrees C for 20 min and the enzyme's 92.1% activity's was retained at 40 degrees C for 20 min without substrate. Hydrolysis products of the enzyme were maltose, unidefined oligosaccharides, and a trace amount of glucose. Alpha-amylase of P. chrysogenum hydrolysed starches from different sources. The best hydrolysis was determined (98.69%) in soluble starch for 15 minute at 30 degrees C.  相似文献   

16.
An acid phosphatase with phytase activity, produced by Mucor hiemalis Wehmer, was purified to homogeneity by a combination of anion exchange, gel filtration and hydrophobic interaction chromatography. The monomeric, glycosylated enzyme displayed maximum activity at 55 degrees C and pH 5.0-5.5. When compared to commercialised products, the enzyme is more thermostable (80 degrees C, 5min), displays a broader pH versus activity profile and greater stability under simulated digestive tract conditions. Unlike commercial phytases, the Mucor enzyme should retain some activity in the small intestine as well as in the stomach, facilitating a longer duration of action and hence more extensive substrate hydrolysis. Substrate specificity studies and protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme is an acid phosphatase with activity on phytate. Cocktails containing acid phosphatases in combination with true phytases have been shown to promote more extensive phytate degradation than do true phytases alone. This, coupled to the enzyme's functionally relevant physicochemical characteristics, suggests its likely suitability for inclusion in second generation phytase cocktails for application in animal feed.  相似文献   

17.
1. Allantoin racemase is a novel enzyme which catalyzes the conversion of S(+)-and R(minus)-allantoin into the racemate. 2. The enzyme is present in Pseudomonas testosteroni, Pseudomonas putida and five biotypes of Pseudomonas fluorescens, but absent in a number of other Pseudomonas species. 3. The enzyme of Ps. testosteroni was purified 133-fold and exposes optimal activity at pH 8.0-8.2 and 50 degrees C. The enzyme is stable on heating for 15 min at 70 degrees C. 4. The enzyme appeared to be specific for the optical isomers of allantoin and no cofactors are involved in the reaction. 5. The optical aspecificity of allantoinase of Proteus rettgeri was reaffirmed.  相似文献   

18.
Dehydroepiandrosterone sulfate is the most abundant sulfated steroid transformed in human tissues and serves as a precursor for steroid hormones. Recombinant human dehydroepiandrosterone sulfotransferase (DHEA-ST) expressed in glutathione sulfotransferase fusion form in E. coli was purified using glutathione sepharose 4B affinity adsorption chromatography, a Factor Xa cleavage step, and Q-sepharose fast flow column chromatography. The homogeneous preparation had an activity toward dehydroepiandrosterone (DHEA) of 150+/-40 nmol/min per mg of protein under the assay conditions at an overall yield of 38.4%. The recombinant human DHEA-ST was shown to have a subunit mass of 34 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, while having a molecular mass of 67.2 kDa by Superose-12 gel filtration. Our results indicate that the active recombinant enzyme expressed in E. coli is a homodimer.Biochemical properties for purified DHEA-ST were studied using DHEA as a substrate. The optimum pH ranged from pH 7 to 8, and the optimum temperature 40-45 degrees C. Ninety percent of basal DHEA-ST activity remained even after the enzyme was treated at 45 degrees C for 15 min. The 50% inactivation concentration of NaCl for DHEA-ST activity was determined to be around 500 mM. The K(m) value for DHEA was 1.9+/-0.3 microM and V(max)=190+/-18 nmol/min per mg of protein at 37 degrees C, pH 7.5.  相似文献   

19.
Microbacterium sp. AL-210 producing a novel levan fructotransferase (LFTase) was screened from soil samples. The LFTase was purified to homogeneity by (NH4)2SO4 fractionation, column chromatography on Resource Q, and Superdex 200HR. The molecular weight of the purified enzyme was estimated to be approximately 46 kDa by both SDS-PAGE and gel filtration, and the enzyme's isoelectric point was pH 4.8. The major product produced from the levan hydrolysis by the enzyme reaction was identified by atmospheric pressure ionization mass spectrometry and NMR analysis as di-D-fructose-2,6':6,2'-dianhydride (DFA IV). The optimum pH and temperature for DFA IV production were 7.0 and 40 degrees C, respectively. The enzyme was stable at a pH range 7.0-8.0 and up to 40 degrees C. The enzyme activity was inhibited by FeCl2 and AgNO3. The enzyme converted the levan to DFA IV, with a conversion yield of approximately 44%. A gene encoding the LFTase (lftM) from Microbacterium sp. AL-210 was cloned and sequenced. The nucleotide sequence included an ORF of 1593 nucleotides, which is translated into a protein of 530 amino acid residues. The predicted amino acid sequence of the enzyme shared 79% of the identity and 86% of the homology with that of Arthrobacter nicotinovorans GS-9.  相似文献   

20.
Todorovic B  Glick BR 《Planta》2008,229(1):193-205
Progress in DNA sequencing of plant genomes has revealed that, in addition to microorganisms, a number of plants contain genes which share similarity to microbial 1-aminocyclopropane-1-carboxylate (ACC) deaminases. These enzymes cleave ACC, the immediate precursor of ethylene in plants, into ammonia and alpha-ketobutyrate. We therefore sought to isolate putative ACC deaminase cDNAs from tomato plants with the objective of establishing whether the product of this gene is a functional ACC deaminase. In the work reported here, it was demonstrated that the enzyme encoded by the putative ACC deaminase cDNA does not have the ability to break the cyclopropane ring of ACC, but rather it utilizes D: -cysteine as a substrate, and in fact encodes a D: -cysteine desulfhydrase. Kinetic characterization of the tomato enzyme indicates that it is similar to other, previously characterized, D: -cysteine desulfhydrases. Using site-directed mutagenesis, it was shown that altering only two amino acid residues within the predicted active site served to change the enzyme from D: -cysteine desulfhydrase to ACC deaminase. Conversely, by altering two amino acid residues at the same positions within the active site of ACC deaminase from Pseudomonas putida UW4 the enzyme was converted into D: -cysteine desulfhydrase. Therefore, it is possible that a change in these two residues may have occurred in an ancestral protein to result in two different enzymatic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号